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Abstract

Deep learning surrogate models aim to accelerate
the solving of partial differential equations (PDEs)
and have achieved certain promising results. Al-
though several main-stream models through neural
operator learning have been applied to delve into
PDEs on varying geometries, they were designed
to map the complex geometry to a latent uniform
grid, which is still challenging to learn by the net-
works with general architectures. In this work, we
rethink the critical factors of PDE solutions and
propose a novel model-agnostic framework, called
3D Geometry-Guided Conditional adaptation (3D-
GeoCA), for solving PDEs on arbitrary 3D ge-
ometries. Starting with a 3D point cloud geom-
etry encoder, 3D-GeoCA can extract the essential
and robust representations of any kind of geomet-
ric shapes, which conditionally guides the adapta-
tion of hidden features in the surrogate model. We
conduct experiments on two public computational
fluid dynamics datasets, the Shape-Net Car and
Ahmed-Body dataset, using several surrogate mod-
els as the backbones with various point cloud ge-
ometry encoders to simulate corresponding large-
scale Reynolds Average Navier-Stokes equations.
Equipped with 3D-GeoCA, these backbone models
can reduce the L-2 error by a large margin. More-
over, this 3D-GeoCA is model-agnostic so that it
can be applied to any surrogate model.

1 Introduction
Partial differential equation (PDE) is a powerful model to de-
scribe various physical phenomena and help us to understand
this world to a large extent. However, most PDEs do not
have closed-form solutions, which leads to a resort to numer-
ical methods for solving them. Actually, various approaches
have been proposed, including finite difference [Strikwerda,
2004] and finite element methods [Hughes, 2012], whereas
these methods usually have high computational costs, which
are unendurable in many real-time settings. As a data-driven
method, the deep learning surrogate model can learn from nu-
merical solutions to a family of PDEs and generalize well to

the unseen equations via forward propagation within a sec-
ond, which is much faster than traditional numerical solvers,
exhibiting a promising future.

While traditional numerical solvers usually simulate PDEs
on irregular mesh grids with various geometries, it is possible
to reformulate the input data into uniform grids and employ
convolution-based architectures such as U-Net [Ronneberger
et al., 2015] to train surrogate models. However, this ap-
proach may not be as efficient and can introduce additional
interpolation error [Li et al., 2022]. To address these chal-
lenges, several researchers have turned to Graph Neural Net-
works (GNNs) as the backbone of surrogate models [Belbute-
Peres et al., 2020; Pfaff et al., 2020]. Furthermore, Bonnet el
al. [2022b; 2022a] introduced certain benchmarking graph-
mesh datasets using graph or point cloud input data. In their
work, they employed Point Cloud Networks to solve the 2D
steady-state incompressible Navier-Stokes equations.

Another stream of research focuses on the Neural Opera-
tor Learning paradigm, which aims to learn a mapping be-
tween infinite-dimensional function spaces. Li et al. [2020b]
made theoretical analyses and proposed a novel iterative ar-
chitecture utilizing the kernel integral operator. When the in-
put type is uniform grids, Fast Fourier Transform (FFT) is
used to implement the kernel integral operator. This opera-
tor, known as FNO [Li et al., 2020b], transforms features in
both the physical and spectral domains. To handle irregular
grid inputs, Anandkumar et al. [2020] introduced the Graph
Neural Operator (GNO), where the kernel integral operator is
formulated as message passing on a radius graph. These two
neural operators have been widely adopted and have spawned
numerous improved methods capable of solving PDEs with
varying geometries, including Multipole GNO (MGNO) [Li
et al., 2020a], Geo-FNO [Li et al., 2022], and Geometry-
Informed Neural Operator (GINO) [Li et al., 2023b].

Although the above works have achieved remarkable
progress in solving 2D equations, many real-world appli-
cations face the problem of 3D PDEs on varying geome-
tries, ranging from industrial and engineering design to real-
time physics simulation engines in games and virtual reality.
When it comes to solving more complex 3D problems, the
mentioned state-of-the-art approaches have severe limitations
as follows:

Inefficient Representation for 3D Inputs: Most exist-
ing methods treat all positions within the field—both bound-



ary and interior points—equally, feeding all grids into the
model in a coarse manner [Bonnet et al., 2022a; Bonnet et al.,
2022b]. However, such an approach can hinder the learning
of geometry features crucial for PDE solving, as the boundary
points carry more information than the other points to repre-
sent a geometry. In this sense, current methods inefficiently
represent the input field, which becomes more serious as the
input dimension increases to 3D.

Poor Generalization on Limited Training Samples: An-
other limitation lies in the scarcity of training data. Gener-
ating a dataset for the deep learning surrogate model is com-
putationally intensive and time-consuming. For instance, cre-
ating a Computational Fluid Dynamics (CFD) Ahmed-Body
dataset with 551 samples required Li et al. [2023b] to con-
duct large-scale 3D simulations on 2 NVIDIA V100 GPUs
and 16 CPU cores, each simulation of a sample lasting 7 to 19
hours. The limited number of training samples further com-
plicates learning geometry features that can be generalized to
unknown shapes, thus compromising the model’s generaliza-
tion capabilities.

To overcome the above challenges, we propose a brand
new model-agnostic framework, 3D Geometry-Guided Con-
ditional Adaptation (3D-GeoCA). Based on a general deep
learning architecture, 3D-GeoCA adopts a novel method
which conditionally guides the adaptation of hidden features
with latent geometry representations. The involved point
cloud geometry encoder has low computational cost since it
computes only on the boundary points that occupy a very
small portion of the input field. Regarding the problem of
data scarcity, we apply the weight transfer by utilizing some
pre-trained point cloud models. Equipped with 3D-GeoCA,
the backbone model becomes more geometry-aware and gen-
eralizes better on small-sample 3D PDE datasets. The main
contributions of our paper are as follows:

1. We propose a novel framework, called 3D Geometry-
Guided Conditional adaptation (3D-GeoCA), for solv-
ing large-scale 3D PDEs on arbitrary geometries. 3D-
GeoCA originally introduces a point cloud geometry en-
coder to encode the boundary of the problem domain,
and conditionally guides the adaptation of hidden fea-
tures in the backbone model with geometry information.
Experimental results on two 3D PDE datasets demon-
strate that our framework provides generalizable geom-
etry features beneficial to the backbone surrogate model,
which is lacking in the other approaches.

2. Our 3D-GeoCA is model-agnostic and orthogonal to
various deep learning based 3D PDE frameworks, in-
cluding MLP, GNN, GNO and so on.

3. To the best of our knowledge, our framework unprece-
dentedly introduces 3D understanding pre-training to the
deep surrogate model for PDEs to alleviate the shortage
of training samples, bridging the relationship between
these two fields.

2 Problem Setting and Preliminaries
Problem setting. We consider a family of PDEs with varying
domains of the following general form:

∂u(x, t)

∂t
= Lau(x, t), (x, t) ∈ Dω × T

u(x, 0) = f(x), x ∈ Dω

u(x, t) = g(x, t), x ∈ ∂Dω × T,

(1)

where La is a differential operator describing the governing
equation, being parameterized by a; f and g respectively de-
note corresponding initial and boundary conditions; and Dω

is the problem domain, being parameterized by some latent
parameters ω ∈ Ω.

In practical applications, we ideally assume that there ex-
ists a map F : (a, f, g,Dω) 7→ u which gives the solution
of equations 1. Here, we mainly consider the steady-state
equations, where u is independent of the time t, equations 1
convert to Lau(x) = 0 and the solution map simplifies to
F : (a, g,Dω) 7→ u, from which we clearly aware that the
boundary of the domain, ∂Dω , is a decisive factor to the so-
lution u.

However, learning the geometry of ∂Dω from a small
dataset is rather challenging, especially for 3D cases. We be-
lieve that this is one of the bottlenecks current studies have
to confront. Considering that the boundary ∂Dω can be dis-
cretized to the point cloud data, we introduce a point cloud
encoder to enrich the learning of geometries. Moreover,
a state-of-the-art 3D understanding pre-training framework,
ULIP-2 [Xue et al., 2023b], is adopted to strengthen our en-
coder. By using point cloud models pre-trained on large-scale
3D object datasets, we can learn better geometry features to
solve this dilemma.

Preliminaries: ULIP-2. Deriving from the Unified Rep-
resentation of Language, Images, and Point Clouds (ULIP)
framework proposed by Xue et al. [2023a], ULIP-2 is a
tri-modal pre-training framework, which leverages a pseudo
self-supervised contrastive learning approach to align fea-
tures across: (i) 3D shapes, (ii) their rendered 2D image
counterparts, and (iii) the language descriptions of 2D im-
ages of all views. Among them, language descriptions of 2D
images come from BLIP-2 [Li et al., 2023a], a large multi-
modal model. In ULIP-2, a fixed and pre-aligned language-
vision model, SLIP [Mu et al., 2022], is used to extract text
and image features, after which the authors train point cloud
encoders under the guidance of 3D-to-image and 3D-to-text
contrastive alignment losses. ULIP-2 yields significant im-
provements on downstream zero-shot and standard classifica-
tion tasks, showing a powerful capability for 3D representa-
tion learning.

3 3D Geometry-Guided Conditional
Adaptation

In this section, we present our framework, 3D-GeoCA, in de-
tail. The key insight of 3D-GeoCA is the emphasis on the ge-
ometries inherent in various PDE problem domains. To cap-
ture these geometries, we introduce a specialized geometry
encoder. Furthermore, we propose an adaptor that seamlessly
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Figure 1: The main architecture of the 3D-GeoCA framework. Our 3D-GeoCA originally introduces a point cloud encoder to encode the
geometry of PDEs problem domain. Geometry-guided conditional adaptors after each backbone layer are designed to guide the adaptation of
hidden features in the surrogate model.

integrates with existing surrogate backbone models. Figure 1
provides an overview of the main architecture of 3D-GeoCA.
As a model-agnostic framework, 3D-GeoCA comprises three
primary components: (i) a point cloud geometry encoder
(blue), (ii) an arbitrary backbone model (yellow), and (iii)
geometry-guided conditional adaptors (red). The point cloud
encoder solely relies on the boundary of the problem domain
to extract its geometry features. Conversely, the backbone
model considers the entire problem domain, along with the
signed distance function (SDF) and normal vector features of
each grid. Finally, a crucial part of our framework is the de-
sign of several geometry-guided conditional adaptors, which
facilitate the fusion of geometry features with the hidden fea-
tures of the backbone surrogate model.

Point cloud geometry encoder. As per previous discus-
sions in section 2, one of the bottlenecks of current work
is the under-exploited geometry features of various prob-
lem domains. To overcome this difficulty, we propose a
point cloud encoder EP specialized to extract features of
different geometries, whose input is a 3D point cloud P =
{x∂D

1 , x∂D
2 , · · · , x∂D

n } ⊂ ∂D discretized from the boundary
of the problem domain D.

Compared to the whole problem domain D, the point cloud
P ⊂ ∂D usually contains a tiny part of the input grids (espe-
cially for 3D settings), thus leading to a relatively low compu-
tational cost. Current work usually under-emphasizes grids in
P ⊂ ∂D and coarsely feeds all grids with simple hand-crafted
features (such as SDF) into their model [Bonnet et al., 2022b;
Bonnet et al., 2022a]. However, this may lead to a loss in the
learning of geometries, as the small portion of grids at the

boundary contains most underlying geometry information of
the problem domain D.

To improve our encoder EP , we employ a state-of-the-art
3D understanding pre-training framework, ULIP-2, to pre-
train it on large-scale 3D object datasets. Once the encoder is
pre-trained, the parameters of EP can either be fine-tuned or
fixed. In the latter case, we can further reduce the number of
trainable parameters and shorten the training process without
seriously harming the effectiveness of our framework. See
section 4.4 for experimental details.

Backbone models. As a model-agnostic framework, 3D-
GeoCA is compatible with arbitrary backbone models, rang-
ing from the basic multi-layer perceptron (MLP) to the GNO
that follows the popular neural operator learning paradigm.
In our work, the backbone model aims to solve PDEs in the
problem domain D and its boundary ∂D. It takes either the
point cloud data V or graph data G = (V,E) as input, where
the vertex set V = {xD̄

1 , xD̄
2 , · · · , xD̄

N} ⊂ D̄ = D ∪ ∂D con-
tains all grids of interest. We also compute the SDF feature
and normal vector to ∂D for each vertex as a part of fea-
ture engineering. For the graph-based backbone model, the
edge set E can be constructed according to the correspond-
ing meshes or the radius graph with a maximum number of
neighbors [Bonnet et al., 2022b]. In this way, we can prevent
the degree of each vertex from being too large and reduce the
computation complexity.

Geometry-guided conditional adaptor. We propose
a geometry-guided conditional adaptor, which enables the
adaptation of hidden features according to various geome-



tries. At first, the adaptor conducts a feature fusion between
hidden features in the backbone model and geometry features
extracted by the point cloud encoder. Then, a feed-forward
network processes the fused features to add non-linearity.
Skip connections, normalization layers, and dropout layers
are also added to our adaptor.

Denote f (l)
hidden as the hidden features output by the l-th layer

of the backbone model (l = 1, 2, · · · , L), and fgeo = EP (P)
as the geometry features extracted by the point cloud encoder
EP . Formally, each adaptor can be formulated as follows:

f
(l)
fused = f

(l)
hidden+norm(f

(l)
hidden) ∗W

(l)
hidden

+norm(fgeo) ∗W (l)
geo

(2)

and
f
(l)
adapted = f

(l)
fused + FFN(l)(norm(f

(l)
fused)), (3)

where W (l)
hidden and W

(l)
geo are learnable parameters and norm(·)

represents L-2 layer normalization. Equation 2 describes the
process of feature fusion, by which we yield the fused feature
f
(l)
fused of the l-th layer. In equation 3, f (l)

fused are input into a
feed-forward network to acquire adapted features f

(l)
adapted of

the l-th layer.
Finally, the adapted features f

(l)
adapted are fed into the (l +

1)-th layer of the backbone model to get the hidden features
f
(l+1)
hidden of the (l + 1)-th layer.

Although our adaptor introduces additional structures to
the backbone model, it requires only O(h∗(h+hgeo)) param-
eters, where h is the hidden size of the backbone model and
hgeo is the dimension of geometry features. Thus, our adap-
tor brings relatively low computational cost and inference la-
tency once the backbone is a large model. As an example, an
original 3D FNO layer with hidden size h requires O(h2M3)
parameters, where M is the number of top Fourier modes be-
ing kept and usually be a large number, ranging from O(101)
to O(102).

4 Experiments
To empirically validate our findings, we conduct experi-
ments on the public Shape-Net Car CFD dataset generated
by Umetani and Bickel [2018] and the Ahmed-Body dataset
generated by Li et al. [2023b]. Several previous works
have explored these datasets [Umetani and Bickel, 2018;
Li et al., 2023b], while Umetani and Bickel [2018] adopted
the Gaussian process regression approach that falls outside
the category of deep learning. Li et al. [2023b] also proposed
the powerful GINO model for 3D PDEs with varying geome-
tries, whereas their goal was to predict the pressure field at the
boundary of the problem domain, namely ∂D. In contrast, we
intend to simultaneously simulate plural physical properties
(including both pressure and velocity) at all grids of interest
in D̄ = D ∪ ∂D. We trail multiple architectures of the point
cloud geometry encoder and the backbone model, and all ex-
periments can run on a single NVIDIA RTX A6000 GPU.

4.1 Shape-Net Car CFD Dataset
The Shape-Net Car CFD Dataset was generated to study how
fluid flows around various 3D objects [Umetani and Bickel,

2018]. In that work, different object shapes of cars from the
”car” category of ShapeNet [Chang et al., 2015] were pre-
pared, with their side mirrors, spoilers, and tries manually
removed. The dataset contains 889 samples, each of which
is a simulation result of a finite element solver. During the
simulation, time-averaged fluid pressure on the surface and
velocity field around the car was computed by solving the
large-scale Reynolds Average Navier-Stokes equations with
the k-ϵ turbulence model and SUPG stabilization. All the
simulations ran with a fixed inlet velocity of 72 km/h and a
Reynolds number of 5× 106.

The dataset has already been randomly divided into nine
folds. We take the first fold as our testing set, while the rest
of the data consists of the training set. In each sample, the
simulation result is discretized to 32k mesh grids, while the
car surface counts merely 3.7k, implying that our backbone
model and point cloud geometry encoder take 32k and 3.7k
grids as input, respectively.

4.2 Ahmed-Body Dataset
The Ahmed-Body Dataset [Li et al., 2023b] contains
551 industry-level vehicle aerodynamics simulation samples
based on Ahmed-body shapes [Ahmed et al., 2019], 500 for
training and the others 51 for testing. All the simulations were
conducted using the SST k-ω turbulence model, with the in-
let velocity ranging from 10m/s to 70m/s. For each sample,
the computational mesh consisted of 7.2 million grids overall,
with 100k of those points at the surface.

Currently, merely the pressure data at the surface are avail-
able, therefore we use our framework to predict them.

4.3 Experimental Settings
Backbone models. Multiple architectures of the backbone
model and the point cloud geometry encoder are employed to
demonstrate the effectiveness of our framework. Since 3D-
GeoCA is a groundbreaking framework that correlates PDEs
with the field of 3D understanding, we start with the simple
MLP as our backbone model. Several classical GNNs, such
as GraphSAGE [Hamilton et al., 2017] and Graph Attention
Network (GAT) [Veličković et al., 2018] are also attempted
in later. We also explore the application of 3D-GeoCA in the
popular neural operator learning paradigm, where we con-
sider GNO due to its ability to deal with irregular grid input
directly. For Ahmed-Body dataset, since each sample con-
sists of 100k data points, it is challenging for some graph-
based models to scale up, so we only attempt to train two
relative simple backbones, MLP and GraphSAGE.

Point cloud geometry encoders. As for the point cloud
geometry encoder, we trial with two state-of-the-art point
cloud architectures, Point-BERT [Yu et al., 2022] and Point-
NeXt [Qian et al., 2022]. Point-BERT adopts transformer-
based architecture, while PointNeXt is a lightweight back-
bone based on PointNet++ [Qi et al., 2017] with improved
training and scaling strategies. Both point cloud models
are pre-trained with the ULIP-2 framework on the Objaverse
Triplets dataset [Xue et al., 2023b] to promote their capabili-
ties to learn 3D geometry representations.

Training schemes. We normalize all inputs and outputs
for data pre-processing. Since we target to predict the pres-



Geo. Encoder
Backbone

MLP GraphSAGE GAT GNO

None 8.044 0.556 6.590 0.523 6.128 0.525 5.120 0.434

3D-GeoCA w/ PointNeXt (frozen)
6.705 0.375 5.618 0.363 5.510 0.355 4.970 0.386

(-17%) (-33%) (-15%) (-31%) (-10%) (-32%) (-3%) (-11%)

3D-GeoCA w/ Point-BERT (frozen)
6.456 0.368 5.630 0.349 5.629 0.346 4.991 0.365

(-20%) (-34%) (-15%) (-33%) (-8%) (-34%) (-3%) (-16%)

3D-GeoCA w/ Point-BERT (fine-tuned)
5.916 0.352 5.569 0.349 5.438 0.339 4.906 0.356

(-26%) (-37%) (-15%) (-33%) (-11%) (-35%) (-4%) (-18%)

Table 1: Test L-2 errors of different backbone models with various geometry encoders on the Shape-Net Car CFD dataset. Errors of pressure
is presented on the left side, while errors of velocity is presented on the right side. All errors are denormalized. Values in brackets represent
the percentage of error reduction compared to the baseline with no geometry encoder.

sure and velocity by one forward propagation, we use the fol-
lowing weighted MSE loss to train models:

Loss =
1

N

N∑
i=1

(
1

n(i)

n(i)∑
j=1

∥v(i)j,pred − v
(i)
j,gt∥

2
2

+λ
1

m(i)

∑
x
(i)
j ∈∂D

∥p(i)j,pred − p
(i)
j,gt∥

2
2),

(4)

where N denotes the number of training samples. v
(i)
j and

p
(i)
j represent velocity and pressure of the i-th sample at the j-

th grid, respectively. n(i) denotes the number of input grids in
the i-th sample, and m(i) =

∑n(i)

j=1 I(x
(i)
j ∈ ∂D) is the num-

ber of boundary grids in the i-th sample. The hyper-parameter
λ balances the weight of the error between velocity and pres-
sure, taking the default value of 0.5.

We train our models with Adam optimizer and one-cycle
learning rate scheduler [Smith and Topin, 2019]. The batch
size B = 11, and the maximum and minimum learning rates
are 1× 10−3 and 1× 10−6, respectively. For the GNO back-
bone, the hidden size h = 32, and we train models for 200
epochs to save GPU memories and training times. Models
of other backbones are trained for 400 epochs with the hid-
den size h = 64. For Ahmed-Body dataset, all models are
trained for 100 epochs, the same experimental settings as Li
et al. [2023b], for a fair comparison. For more implementa-
tion details, please see appendix A.1.

Evaluation metrics. Following previous work [Anand-
kumar et al., 2020; Li et al., 2020b; Li et al., 2023b;
Tran et al., 2022], we introduce L-2 error and relative L-2
error to evaluate our models, which are defined as

L-2 error =
1

N

N∑
i=1

∥u(i)
pred − u

(i)
gt ∥2 (5)

1B = 1 implies that we train the model on a batch of 32k graph
nodes for Shape-Net Car dataset and 100k for Ahmed-Body dataset,
respectively.

and

relative L-2 error =
1

N

N∑
i=1

∥u(i)
pred − u

(i)
gt ∥2

∥u(i)
gt ∥2

, (6)

where u represents the physical property of interest.

4.4 Results and Comparisons
The effectiveness of 3D-GeoCA. Table 1 illustrates test L-2
errors of multiple backbone models with various point cloud
geometry encoders on the Shape-Net Car dataset. Since
PointNeXt requires a training batch size greater than 1 to ap-
ply batch normalization, we keep its parameters frozen and do
not fine-tune them. From table 1, we notice that 3D-GeoCA
universally promotes all backbone models, reducing their L-
2 errors by a large margin. For instance, with the trainable
Point-BERT geometry encoder, MLP yields a marked descent
in L-2 errors by 26% and 37% for pressure and velocity, re-
spectively. The GNO 2, which follows the paradigm of oper-
ator learning, also benefits from our 3D-GeoCA framework,
with its L-2 errors decreasing by 4% for pressure and 18% for
velocity. By introducing a specialized geometry encoder, we
take full advantage of the rich geometry information, and our
adaptors enable backbone models to become more geometry-
aware to generalize to unknown shapes.

At the inference stage, our proposed 3D-GeoCA with
Point-BERT (fine-tuned) encoder merely takes 0.066 sec-
ond for each sample in the Shape-Net Car dataset, which is
much faster than traditional numerical solvers. As a com-
parison, in their efforts to generate that dataset, Umetani and
Bickel [2018] spent about 50 minutes per sample to run the
simulations using traditional solvers. Figure 2 visualizes a
ground truth and prediction generated by the GNO backbone
with the Point-BRET (fine-tuned) encoder. For more visual-
ization examples, please see appendix A.5.

Moreover, 3D-GeoCA accelerates the convergence of the
backbone model as well. Figure 3 exhibits the training loss of
the GNO backbone with different geometry encoders for the

2We use a variant of GNO which utilizes hexahedral meshes gen-
erated by Umetani and Bickel [2018] to construct graphs. For origi-
nal GNO, we also conduct experiments, see appendix A.2 for details.



Geo. Encoder
Backbone MLP GraphSAGE GINO (enc-dec) GINO (dec)

None 41.417 11.86% 44.937 12.87% - 8.31%3 - 9.01%3

3D-GeoCA w/ PointNeXt (frozen) 28.579 7.76% 30.662 8.73% - - - -
3D-GeoCA w/ Point-BERT (frozen) 29.946 8.12% 31.282 8.55% - - - -

3D-GeoCA w/ Point-BERT (fine-tuned) 28.056 7.56% 29.857 8.26% - - - -

Table 2: Test L-2 errors of different backbone models with various geometry encoders on the Ahmed-Body dataset. Denormalized L2 errors
of pressure is presented on the left side, while relative L2 error is presented on the right side.

beginning 20 epochs. The training loss of the GNO baseline
decreases slowly, while the other three models equipped with
3D-GeoCA show higher convergence rates.

 prediction

-248.03 -133.68 -19.32 95.04 209.39
pressure

0.00 5.88 11.75 17.63 23.51
velocity

 ground truth

Figure 2: Visualization of a prediction and ground truth in the
Shape-Net Car dataset. The prediction is generated by the GNO
backbone with Point-BRET (fine-tuned) encoder.
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Figure 3: Training losses of GNO with different geometry encoders
for the beginning 20 epochs. Experiments were done on the Shape-
Net Car dataset.

We also conduct experiments on the Ahmed-Body dataset,
and table 2 exhibits corresponding results. The introduc-
tion of 3D-GeoCA also yields consistent improvement to the
backbone models across different backbone models and ge-

3The results are from [Li et al., 2023b].

ometry encoders. Among them, the MLP backbone with
Point-BERT (fine-tuned) encoder gains the lowest relative L2
error of 7.56%.

Discussions on different geometry encoders. Surpris-
ingly, we observe that once pre-trained, even though the ge-
ometry encoder keeps frozen during training, it still extracts
useful geometry information that can guide the adaptation in
the backbone model. As shown in table 1 and 2, the fixed
PointNeXt and Point-BERT features pre-trained by ULIP-
2 still perform well in the 3D-GeoCA framework and lead
to competitive results compared to the fine-tuned features.
This finding is of great significance, implying that under our
3D-GeoCA framework, 3D understanding pre-training tech-
niques may directly enhance the performance of PDEs surro-
gate models. Moreover, once the geometry encoder is frozen,
we can pre-calculate geometry features and reduce the num-
ber of learnable parameters during training, further short-
ening the training process. Our GNO backbone with pre-
trained features requires merely 0.6 million trainable param-
eters while reaching competitive low L-2 and relative L-2 er-
rors.

The impact of various backbones. As a novel frame-
work that unprecedentedly correlates PDEs with the field of
3D understanding, we start with the simple MLP as our back-
bone model. Conceptually, according to the discussion in sec-
tion 2, in steady-state equations with fixed parameters a and
boundary conditions g, the physical property u at (x, y, z) is
merely decided by the geometry of problem domain D and
its coordinate (x, y, z). This explains why MLP backbone
performs competitive well compared to GraphSAGE in the
Ahmed-Body dataset, as shown in table 2. Another factor we
need to point out is that we construct relatively less number
of edges for each sample in this large dataset to save com-
putational costs, which may lead a insufficient training for
GNN. However, table 1 indicates that on the Shape-Net Car
dataset, the simple MLP gains relatively large L-2 errors com-
pared to other backbones. We conjecture that this may be be-
cause the ground truth u of this dataset is a smooth function,
and adjacent data points may share similar features. With
the introduction of graph input structure, GNNs can learn
better features from adjacent nodes via the message-passing
mechanism. Consistent with our analysis, GraphSAGE and
GAT perform better than MLP on this dataset. Differing the
above backbones, GNO aims to learn operators that map be-
tween function spaces via the kernel integration mechanism
and shows an advantage in predicting pressure fields in our
experiments.



Geo. Encoder
Backbone

MLP GraphSAGE GAT GNO

None (bs=1) 8.044 0.556 6.590 0.523 6.128 0.525 5.120 0.434
None (bs=2) 9.976 0.688 7.470 0.611 6.957 0.622 5.872 0.517

3D-GeoCA w/ PointNeXt (frozen, bs=1) 6.705 0.375 5.618 0.363 5.510 0.355 4.970 0.386
3D-GeoCA w/ PointNeXt (frozen, bs=2) 8.758 0.546 6.293 0.467 6.273 0.471 5.581 0.479

3D-GeoCA w/ Point-BERT (frozen, bs=1) 6.456 0.368 5.630 0.349 5.629 0.346 4.991 0.365
3D-GeoCA w/ Point-BERT (frozen, bs=2) 7.796 0.437 5.909 0.411 5.922 0.399 5.329 0.411

3D-GeoCA w/ Point-BERT (fine-tuned, bs=1) 5.916 0.352 5.569 0.349 5.438 0.339 4.906 0.356
3D-GeoCA w/ Point-BERT (fine-tuned, bs=2) 6.689 0.423 5.571 0.360 5.454 0.351 4.957 0.374

Table 3: Test L-2 errors under different batch sizes. Errors of pressure is presented on the left side, while errors of velocity is presented on
the right side. All errors are denormalized.

Comparisons with other works. For the Shape-Net
Car dataset, GNO with the trainable Point-BERT encoder
achieves the lowest test loss in our experiments, with the
L-2 error (relative L-2 error) of pressure and velocity of
4.906 (7.79%) and 0.356 (3.19%), respectively. As some
reference values, the Gaussian Process Regression approach
proposed by Umetani and Bickel [2018] reached a nine-fold
mean L-2 error of 8.1 for pressure and 0.48 for velocity.
The previous work GINO [Li et al., 2023b] reported a rel-
ative L-2 error of pressure of 7.19% for GINO (decoder) and
9.47% for GINO (encoder-decoder). The relative L-2 error of
GINO (decoder) is lower than that of our current experiments,
though we should mention that their work has different train-
ing schemes and train-test split from ours. Another factor
is that the GINO adopts a complex GNO-FNO architecture,
while we have merely explored GNO as our backbone model.
Moreover, the GINO can only simulate the pressure field at
the surface of each car (3.7k grids). As the opposite, we train
our models to simultaneously predict the velocity field around
the car (32k grids) as well. For Ahmed-Body dataset, the
MLP backbone equipped with Point-BERT (fine-tuned) en-
coder reaches the state-of-the-art lowest relative L2 error of
7.56%, outperforming GINO with either encoder-decoder or
decoder-only architectures.

4.5 Ablation Studies
The selection of batch size. During experiments, we find that
the training batch size is the most critical hyper-parameter
that impacts the quality of training. Table 3 shows the test L-
2 errors under different batch sizes 4, from which we observe
that using a larger batch size during training brings a univer-
sal negative influence on our models, especially for simple
architectures, such as models with MLP backbone and mod-
els with no geometry encoder. When the model structure be-
comes complex, there is relatively less increase in test L-2 er-
ror. Although it is more obvious to validate the effectiveness
of our 3D-GeoCA framework when the batch size B = 2,
we set B = 1 in our experiments to ensure that every model
obtains the best results.

4We also fine-tune PointNeXt under B = 2, see appendix A.3

The robustness of geometry encoders. We further
demonstrate the robustness of our fine-tuned geometry en-
coder by randomly dropping its input data points in the in-
ference time. Figure 4 depicts how L-2 errors varied with the
rate of dropping increases. Surprisingly, even if we drop each
data point with a high probability of 60%, our encoder still
extracts essential geometry features that can guide the adapta-
tion of hidden features in the backbone model, demonstrating
its strong robustness.
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Figure 4: Inference with input of geometry encoder randomly
dropped.

5 Conclusion
Learning the solution of 3D PDEs with varying geometries
is challenging due to the complexity of 3D shapes and insuf-
ficient training samples. By introducing a specialized point
cloud geometry encoder, our proposed 3D-GeoCA frame-
work learns the essential and robust geometry features that
can guide the adaptation of hidden features in the backbone
model. 3D understanding pre-training further enhances our
framework. The experimental results demonstrate that sev-
eral backbones can reduce the L-2 error by a large margin as
they are equipped with 3D-GeoCA. So far, our way of condi-
tional adaptation remains simple and effective, but may not be
optimal. For future work, we are interested in exploring other
effective and efficient structures for our adaptor. Moreover,
we expect our framework to be compatible with the back-
bones of broader fields, such as FNO and Physics-Informed
Neural Network (PINN) [Raissi et al., 2019].
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