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ABSTRACT

Point cloud classification has sparked many researchers’ interest for
its cornerstone role in 3D applications. Inheriting the CutMix series
augmentation that performs well in 2D images, PointCutMix and
RSMix are proposed to generate new samples for 3D point clouds,
by replacing partial points of one cloud with those of another. How-
ever, the selection of mixed regions is all built on randomness, ignor-
ing the significance of point clouds’ saliency. To address this defi-
ciency, we propose PCSalMix: a novel Saliency-based Mix aug-
mentation for Point Cloud classification. The gradient of classi-
fication network on inputs is a natural tool to locate the saliency.
Based on this discovery, we extract points with larger gradient val-
ues to make more representative samples. Afterward, the soft labels
are weighted more accurately by accumulated gradients rather than
count ratios of points. The experimental results verify the outperfor-
mance of our method on ModelNet40 and ModelNet10 benchmarks
in terms of accuracy and robustness against adversarial attacks.

Index Terms— Point Cloud Classification, Mix Augmentation,
Gradient Saliency

1. INTRODUCTION

Recently, the exploration of point clouds has drawn lots of attention
due to their value in many applications such as autonomous driving.
Compared with 2D images, 3D point clouds are more challenging
especially in two aspects: (1) Unordered: a set of points without a
specific order. (2) Invariant: learned representation should be invari-
ant to certain transformations. Focusing on the foundational classifi-
cation of point clouds, it has gone through a fast development: from
classical PointNet [1] to PointNet++ [2] and DGCNN [3] etc.

Except for the evolution of network models, data augmentations
are commonly adopted strategies to enhance the representation ca-
pability of models due to the scarcity of point cloud data. Among
them, there are some conventional data augmentations (ConvDA)
such as rotation, scaling and jittering [4]. Besides, a series of mix
data augmentations (MixDA) is inherited from 2D images: Point-
Mixup [5], PointCutMix [6] and RSMix [7]. As the names indicate,
they are extended works of Mixup [8] and CutMix [9] in 2D images,
which interpolate or splice between two images to generate a new
mixed image. Considering the disorder of point clouds, the key is to
first match two samples by subset replacement or assignment metrics
such as Earth Mover’s Distance (EMD).

Although effective, the above CutMix series all face the same
problem: the mixed part is randomly selected so that some mixed
samples may be invalid. For example, cutting a background re-
gion of one image to paste to another doesn’t generate a meaningful
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Fig. 1. Visual examples of mixed point clouds. Our PCSalMix gen-
erates more solid samples than PointCutMix. In subgraph of x2

Saliency, red points represent greater saliency.

image. Therefore, several saliency-based MixDAs are successively
proposed such as PuzzleMix [10] and SaliencyMix [11], which try to
select the salient regions to conduct mixDA. However, these works
either require external tools to locate saliency or rely on additional
policies to generate images. From 2D images to 3D point clouds,
the large gap between their data forms determines that the non-trivial
generalization of saliency-based MixDA is a challenge.

Looking back at point clouds, several works [12, 13] are pro-
posed to detect salient points, but it is still inconvenient to directly
integrate with MixDA. From our point of view, the gradients of neu-
ral network models can properly locate the most distinguishable part
of one sample. Recall the definition of gradient:

∇x =
∂`(fθ(x),y)

∂x
= lim

∆x→0

`(fθ(x+ ∆x),y)− `(fθ(x),y)

∆x
(1)

where `, x, y, f and θ are the loss function, input sample, label,
network and its parameters, respectively. ∇x itself is essentially the
sensitivity of loss function to the disturbance ∆x on input sample.
It is exactly tied to the salient regions we are searching for.

Inspired by the above discovery, for Point Cloud classification,
we propose a simple but effective gradient Saliency-based Mix strat-
egy to fulfill data augmentation, named PCSalMix. Specifically, we
only need the gradients of inputs to locate the salient points with
larger gradient response values, then mix operation can be carried
out naturally, generating more solid and sound samples as shown in
Fig. 1. Except for inputs, the generation of soft labels is also a crucial
term in MixDAs. As far as we know, all the existing MixDAs gen-
erate the soft label by calculating the count ratios of mixed points.
Enlightened by the insight that different points in one point cloud
account for different importance, we propose to generate the weight
of mixed soft label by accumulating gradients of points, which coin-
cides exactly with our definition of saliency and is shown more accu-
rately than the weight calculated via the number ratio. The overview
of PCSalMix is shown in Fig. 2.

PCSalMix only needs the gradients of inputs that are off-the-
shelf during the gradient backpropagation of training networks. ThisIC
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advantage determines its generality, such as being agnostic to differ-
ent data forms. Compared with previous PointCutMix and RSMix,
we only need to adjust the selection of cut point center from random-
ness to high gradient values, like a plug-and-play improvement. The
superiority of our method is verified by the experiments on classifi-
cation benchmarks: ModelNet40 and ModelNet10 [14]. PCSalMix
outperforms current state-of-the-art MixDAs such as PointCutMix in
accuracy, including robustness against adversarial attacks. Our main
contributions are summarized as follows:
• We propose a systematic gradient saliency-based mix augmenta-
tion for point cloud classification, which is simple and general due
to its perfect compatibility with networks.
•We propose a new gradient-based paradigm to generate soft labels,
getting a more accurate judgement.
•With the exploration of saliency, the effectiveness of PCSalMix is
fully embodied in the experimental outperformance.

2. RELATED WORK

Developments of Point Cloud Classification In the deep learning
history of point cloud classification, PointNet [1] is a groundbreak-
ing work that independently learns on each point and gathers the
final features for a global representation, yet ignores local features.
To this end, PointNet++ [2] introduces a hierarchical structure on a
nested partitioning of the point set. Furthermore, RS-CNN [15] pro-
poses an irregular Relation-Shape CNN while DGCNN [3] proposes
a Dynamic Graph CNN containing EdgeConv to model point clouds.
Mix Series Data Augmentation Data augmentation is a widely
adopted technology to enhance the generalization of neural net-
works. For 2D images, MixDAs refer to mixing different images
in one batch and summing labels of original images according to
their individual mixed proportions. We can divide MixDAs into
two types: randomly mix series including Mixup [8], CutMix [9]
and Manifold Mixup [16]; saliency-based mix series including
PuzzleMix [10], SaliencyMix [11], etc. As the names indicate,
PointMixup [5] and PointCutMix [6] extend Mixup and CutMix to
3D point clouds with some modifications. The key challenge is the
disorder of point clouds, so EMD is utilized to assign two samples
first. Besides, RSMix [7] proposes a Rigid Subset Mix: replacing
part of a sample with a shape-preserved subset from another. On the
other hand, PointAugment [17] formulates a learnable function with
a shape-wise transformation and a point-wise displacement, to alter-
nately optimize with the classifier. What’s more, new augmentations
of point clouds are successively proposed for semantic segmentation
[18] and object detection [19].
Point Cloud Saliency Visual saliency describes the human attention
distribution for a given scene. To detect saliency points of clouds,
Ding et al. proposed an optimization framework to integrate both the
local distinctness and the global rarity values to obtain final saliency
[12]. Zheng et al. proposed saliency maps by assigning each point
a score reflecting its contribution to the model-recognition loss [13].
Earlier work on point cloud saliency can be referred to [20, 21].

3. PROPOSED APPROACH

3.1. Preliminary

For point cloud classification, let x ∈ X denote the training sample
and y ∈ Y denote the one-hot label, then their dimensions are x ∈
RN×C and y ∈ RK , where N is the point number of one point
cloud, C is the number of channels (C will be set to 3 below, i.e.,
three-dimensional coordinates), and K is the number of categories.

GradLoc GradWeight

𝑥𝑥1

𝑥𝑥2 𝜆𝜆

1 − 𝜆𝜆
𝑦𝑦1

𝑦𝑦2
�𝑥𝑥

𝑓𝑓Mix

Gradient Saliency

Fig. 2. The overview of our proposed approach PCSalMix. All the
symbols are consistent with those described in Sec. 3.

That is to say, x = {xi}Ni=1,xi ∈ R3. Then classification network
is to learn a mapping f : X 7→ Y with parameters θ.

Denote two point clouds as x1 = {x1,i}Ni=1,x2 = {x2,j}Nj=1

and corresponding labels as y1,y2. In analogy to the MixDA of
images, we first need to match unordered points between two point
clouds. The commonly used match principle EMD solves the assign-
ment problem: φ∗ = arg minφ∈Φ

∑N
i=1

∥∥x1,φ(i) − x2,i

∥∥
2
, where

Φ = {{1, · · · , N} 7→ {1, · · · , N}} is the set of possible bijection
assignments and ‖ · ‖2 is L2 norm of vector. Given the optimal φ∗,
EMD is defined as dEMD = 1

N

∑N
i=1

∥∥x1,φ∗(i) − x2,i

∥∥
2
.

Let x2 remain unchanged and denote assigned x1 as x̂1, then
PointCutMix can be expressed as:

x̃ = (I −B) · x̂1 +B · x2 (2)
ỹ = (1− λ)y1 + λy2 (3)

where B = diag{b1, b2, · · · , bN}, bi ∈ {0, 1} is a diagonal binary
mask indicating where to drop out and fill in from two samples, I is
anN -order identity matrix, and λ ∈ [0, 1] denotes mixed ratio which
is sampled from Beta Distribution Beta(β, β) (generally, β = 1).
PointMixup can also be reduced to the above paradigm, where B
degenerates to a diagonal mask with constant coefficient λ.

3.2. Gradient-based Saliency Region Location

After assignment, MixDAs mean selecting a subset xs2 of x2 to re-
place the corresponding subset x̂s1 of x̂1. Then the mixed sample is
a point set (x̂1/x̂

s
1) ∪ xs2. Denoting the number of subset points as

N2, PointCutMix provides two selection modes: random sampling
and k-Nearest Neighbor (kNN) sampling, named PointCutMix-R
and PointCutMix-K, respectively. We denote these two subsets as
xs2 ∼ Rand(N1) and xs2 ∼ kNN(i0, N1) for simplification, where
i0 is the index of initial center point of kNN. Intuitively, the latter
mode is relatively more regular, like a natural combination of two
object parts. But the center of kNN samples x2,i0 is completely ran-
dom and thereby neglects the saliency information of point clouds.

Reviewing Eqn. (1), we take the absolute value of backpropa-
gated gradient of point cloud x as

G =

∣∣∣∣∂`(fθ(x),y)

∂x

∣∣∣∣ (4)

where G ∈ RN is averaged over dimension C. Then we locate the
point with maximum gradient value as the sampled center:

i0 = arg max
i

Gi, i = 1, 2, · · · , N (5)

Notably, to make the gradient-based location more accurate, we
do not apply the mix augmentation until after training several
epochs, which can be called a calibration for gradients. Further-
more, to reduce the disturbance of gradient noise, we improve
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the selection source of cut center from top-1 to top-k gradients:
i0 ∈ {arg top-kiGi}.

Apart from PointCutMix, RSMix also follows the mix process of
cutting and replacement. For two rigid subsets of two point clouds,
xrs1 and xrs2 , the latter is utilized to replace the former. Though
RSMix assigns two point clouds by rigid subset, the center location
of a rigid subset is still random. So we can also improve it to extract
saliency region of x2 by gradient to locate xrs2 .

3.3. Gradient-based Attentive Label Weight

As far as we know, the mixed weight λ of point clouds is reflected
in the number ratio of mixed points. After taking λ, the number of
cut subset is taken as N1 = bλ ∗Nc. Thus the final weight of a soft
label is the inverse mapping: λ = N1/N .

We want to emphasize that in one point cloud, different points
contain different saliency information, so they are supposed to have
different dominance on λ. Then how can we assign such quantified
weight to bridge the gap between the sample and label spaces? The
gradient matrix G exactly provides the tool. We modify the label
weight from original counting by number to an attentive valuation:

λ =

∑
x2,i∈xs

2

g2,i∑
x2,i∈xs

2

g2,i +
∑

x̂1,i∈x̂1

g1,i −
∑

x̂1,i∈x̂s
1

g1,i
, (6)

where g1,i ∈ G1, g2,i ∈ G2 represent the gradients of x̂1 and x2.
For different samples in one batch, λ in Eqn. (6) can not be guar-

anteed the same value, which might make training process difficult
to converge. To deal with this problem, we then convert the imple-
mentation of softening labels by modifying the loss calculation from
(1− λ) · `(fθ(x̃),y1) + λ · `(fθ(x̃),y2) to `(fθ(x̃), ỹ).

It’s worth noting that although the sampling wayxs2 ∼ Rand(N1)
of PointCutMix-R is not proper to impose our gradient-based
saliency location, improving the value of λ with gradient-based
attentive weight still get a promotion. To summarize, we name our
PCSalMix as PCSalMix-R and PCSalMix-K respectively, corre-
sponding to the random and kNN sampling way.

4. EXPERIMENTAL RESULTS

4.1. Datasets and Implementation Details

We evaluate PCSalMix on ModelNet40 and ModelNet10, the two
widely used benchmark datasets for point cloud classification. Mod-
elNet40 consists of 12, 311 CAD models from 40 man-made object
categories, and ModelNet10 is a subset of it which includes 4,899
samples from 10 categories.

As for the networks, we mainly adopt the representative Point-
Net, PointNet++ and DGCNN, inherited from PointCutMix etc., to
conduct comparative experiments. All the hyper-parameter settings
follow the original networks (e.g., for DGCNN, the learning rate is
0.1 and follows the cosine decay etc.). For ConvDAs, we adopt scal-
ing (0.8-1.25) and shifting (range= 0.1) when compared to Point-
CutMix. And without otherwise specified, we take 5-epoch calibra-
tion, top-40 gradients and 0.5 mix probability. All experiments are
conducted on NVIDIA A100 GPUs in PyTorch framework.

Note that there are two different splits of handling point clouds:
pre-aligned (*-A) and unaligned (*-U); single-view and multi-view.
Alignment is defined with horizontally rotated point clouds for train-
ing, while views are judged by whether objects are evaluated from
different angles or not. We have explored and contrasted the results
of previous works in detail to ensure fair and solid comparisons.

Table 1. ModelNet40 classification results (accuracy, %) with differ-
ent models. † indicates that the second result belongs to reproduced
PointCutMix and the last 2 rows belong to our PCSalMix. Other re-
sults are cited from the reported papers. (The same as below.)

Method PointNet PointNet++ DGCNN

Baseline-U 89.2 90.7 92.3
Baseline-A - 91.9 92.7
PointMixup-U 89.9 91.7 -
PointMixup-A - 92.7 92.9
PointAugment 90.9 92.9 93.4
PointCutMix-R† - / 89.42 92.8 / 92.99 92.8 / 92.77
PointCutMix-K† - / 89.55 93.4 / 93.23 93.1 / 93.15
PointCutMix-S - 93.4 93.2

PCSalMix-R 90.48 93.11 93.19
PCSalMix-K 90.92 93.56 93.52

Table 2. ModelNet10 classification results with different models.
Method PointNet PointNet++ DGCNN

Baseline - 93.3 94.8
PointCutMix-K† 93.83 95.04 94.93

PCSalMix-K 93.94 95.59 95.37

4.2. Point Cloud Classification

The comprehensive classification results of ModelNet40 are shown
in Table 1. The superiority of our PCSalMix over previous MixDAs
such as PointCutMix is reflected both on random and kNN sam-
pling. Note that PointCutMix-S has tried to explore mixing with
saliency while it brings little performance change. And PointAug-
ment demands additional network structure beyond the classifier, it’s
not a fair and favorable comparison with it. The effectiveness of
PCSalMix remains agnostic to different network models. PointNet
performs MLP for all points in one cloud together, which makes it
difficult to distinguish the replaced region. Yet our PCSalMix still
brings a significant boost to its performance. Since ModelNet10 is a
subset of ModelNet40, we just conduct the key experiments on Mod-
elNet10, which are shown in Table 2 and share the same behavior.

In addition to PointCutMix, we try to conduct improved exper-
iments on RSMix. However, we are unable to reproduce similar ef-
fects reported in the original paper. For example, sometimes RSMix
does not even perform better than ConvDAs. But the effectiveness of
PCSalMix strategy still works: utilizing DGCNN with ConvDAs of
scaling and dropping, PCSalMix gets an accuracy of 93.68%, better
than the reported 93.5%. As stated in Sec. 3.2, the center of cut sub-
set xrs2 is located by gradient saliency (grad2). When locating the
center of replaced subset xrs1 , random sampling (rand1, the same as
original paper) performs better than also by gradient (grad1), since
this makes the preserved points x1/x

rs
1 relatively more salient.

4.3. Robustness against Adversarial Attack

In addition to classification accuracy, we test models’ robustness
against point dropping attack [13]. We conduct experiments with
the following steps: attacking base test samples (from IF-Defense
[22] codebase) with provided pre-trained models to generate adver-
sarial samples; testing on adversarial samples with trained models
(trained on base training samples with different augmentations). In
other words, we do not impose additional defense means during
training as IF-Defense. Though comparing with IF-Defense is un-

Authorized licensed use limited to: Peking University. Downloaded on December 27,2023 at 14:03:30 UTC from IEEE Xplore.  Restrictions apply. 



Table 3. Robustness on ModelNet40 against point dropping attacks.
The best and second-place results for each row are red and bold. No
and IF denote No-Defense and IF-Defense (* represents the reported
results), while Cut and Sal denote PointCutMix and our PCSalMix.

Attack Model No IF* Cut-R Sal-R Cut-K Sal-K

PointNet 88.41 87.64 88.45 89.59 88.90 90.03
PointNet++ 89.02 89.02 91.45 91.73 91.82 92.38W/O

DGCNN 89.79 89.22 91.61 91.73 91.86 92.10

PointNet 49.43 66.94 76.74 76.01 77.67 78.97
PointNet++ 71.47 79.09 87.03 88.41 87.88 88.37Drop200

DGCNN 58.71 73.30 85.62 85.74 85.17 87.84

PointNet 68.35 77.76 83.43 83.91 83.79 86.06
PointNet++ 80.55 84.56 90.44 90.56 90.03 90.76Drop100

DGCNN 76.42 83.43 89.26 89.18 88.94 89.95

Table 4. ModelNet40 accuracy of PCSalMix-K with different top-k
gradients as the support set of cut center.

Top-k 1 5 20 40 80

DGCNN 93.15 93.19 93.23 93.52 93.07

favorable, we still list its results for reference. From Table 3, we can
observe the superiority of PCSalMix’s robustness against the drop-
ping attacks: PCSalMix behaves better than PointCutMix, and kNN
sampling behaves better than random sampling. PCSalMix’s robust-
ness is largely due to the learning of key points (saliency regions with
high gradients) during training (different points contribute different
importance), so that models can still focus on essential features to
classify after dropping some points.

4.4. Exploration Details

We illustrate some PCSalMix details here. First, for the ablation
study of gradient-based weight, we can refer to the comparison be-
tween PCSalMix-R and PointCutMix-R in Table 1, where ours per-
forms better benefiting from the attentive weight. As for the support
set of cut region’s center, the value k of top-k gradients is investi-
gated in Table 4. To a certain extent, a larger k can reduce the noise
of gradients and make richer cut regions. Following this idea, we
try to replace points with top-k gradients directly (k = bλ ∗ Nc)
instead of by kNN sampling around a center, yet the performance
has deteriorated. Next, the effects of mix probability p are shown in
Table 5. It is best to retain a certain proportion of original samples
during MixDAs. The accuracy of PointNet decreases more signifi-
cantly at p = 1, because this network relatively ignores the local rep-
resentation. And the mapping ways of PCSalMix can be abbreviated
as salient-to-assigned based on PointCutMix and salient-to-random
based on RSMix. Besides, we want to argue that with EMD assign-
ment, our MixDA also basically maintains the rigid body structure,
like RSMix. In addition to random and kNN sampling, we try to
borrow sphere sampling from RSMix, but it does not bring gains.
Moreover, we’ve mentioned the advantages of the generality of our
approach across different data forms. On the 2D image dataset Ima-
geNet [23] with ResNet-50 [24], our gradient saliency-based method
improves the accuracy from 77.08% of CutMix to 78.21%.

When it comes to time efficiency, PCSalMix achieves better per-
formance without taking too much extra time, as shown in Table 6.
Increased time is mainly consumed in the double backpropagation in
one-batch training, i.e., one time with original samples for saliency

Table 5. ModelNet40 accuracy of PCSalMix-K with different p.
Mix prob. p 0 0.25 0.5 0.75 1

PointNet 89.20 90.84 90.92 89.91 89.75
DGCNN 92.70 92.99 93.52 93.31 93.27

Table 6. Efficiency comparison: average training time per epoch on
ModelNet40 with PointNet (p = 1 except for the baseline, 1 GPU).

Method Baseline PointCutMix-K PCSalMix-K

Time (s) 41.32 45.27 46.49

si gi si gi si gi

Fig. 3. Comparison of different saliency region location methods:
based on si or our gi.

location while another time with mixed samples for real training.
The first-time gradient can be utilized for training models either, so
that we can update the network parameters twice. In this way, it is
equivalent to training twice the sample size ideally if we change p
from 0.5 to 1, then the training epochs can be reduced, even to half.

4.5. Saliency Detection and Visual Analysis

In addition to directly using gradients as the saliency score for
point clouds, our motivation can be extended to combine with any
method that can detect saliency regions. In [13], Zheng et al. de-
fined the saliency map of point xi as si = − ∂`

∂ri
r1+α
i , where

ri =
√∑3

j=1 (xij − xcj)2, xc is the center of a point cloud, and
α > 0. Based on this saliency map, they proposed an iterative
point-drop algorithm to dynamically narrow the saliency region.
The computation of saliency regions by si is much more expensive
than if we directly use gradient gi as the saliency score to locate
regions with sampling, since the former has to perform gradient
backpropagation multiple times. Naturally, we can replace our gi-
based location with si-based location, while the other steps are the
same. However, the ModelNet40 accuracy of PointNet decreases
from 90.92% by gi to 88.65% by si. This is most likely due to the
inaccurate detection of saliency regions. As shown in Fig. 3, the
si-based method only detects the cargo hold of the aircraft, while
ours detects key parts, such as the tail and rudder. Another saliency
extraction method proposed by Ding et al. [12] fails to be imple-
mented, due to its not being open source. For more visualization
examples, please refer to Fig. 1.

5. CONCLUSION

We propose an effective and general gradient saliency-based mix
strategy for 3D point cloud classification: PCSalMix. We locate
saliency regions through neural network’s gradients to impose cut
and replacement operation, and adopt the attentive gradient values
to set more accurate weights for soft labels. The effectiveness of our
PCSalMix is fully demonstrated by experiments. In future work, it
is worth applying saliency-based mix augmentation to downstream
tasks of point clouds such as segmentation and object detection.
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