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A Proofs of Main Propositions

In this Appendix, we provide proofs for all the propositions.

A.1 Proof of Proposition 1

Problem (1) can be solved by considering the Lagrangian:

L(ω,ε) = ω→µ→ ω

2
ω→!ω → ε→(Aω → b) = ω→µ→ ω

2
ω→!ω →

J∑

j=1

εj(A
→
jω → bj) (A.1)

where Aj represents the j-th row (constraint) of the matrix A. The first-order conditions:

ϑL(ω,ε)

ϑω
= 0,

ϑL(ω,ε)

ϑε
= 0,

(A.2)

lead to:

µ→ ω!ω →A→ε = 0 =↑ ω!ω = µ→A→ε =↑ ω =
1

ω
!↑1

(
µ→A→ε

)
,

Aω → b = 0.

(A.3)

The first equation proves (2). Combining the two equations leads to the system of equations that

the optimal Lagrange multipliers, ε↓, should satisfy:

1

ω
A!↑1

(
µ→A→ε

)
→ b = 0 =↑ A!↑1A→ε = A!↑1µ→ ωb = 0. (A.4)

In particular, when the feasible region of the constrained optimization problem is nonempty,

A!↑1A→ is invertible, which implies that:

ε↓ =
(
A!↑1A→)↑1 (

A!↑1µ→ ωb
)
. (A.5)
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This completes the proof of (3).

To derive the expected return decomposition of (4), multiplying the expected return, µ, by the

portfolio holdings of (3) leads directly to:

µ→ω↓ =
1

ω
µ→!↑1µ→ 1

ω
ε↓→A!↑1µ. (A.6)

To derive the expected utility decomposition of (5), we have

µ→ω↓ → ω

2
ω↓→!ω↓ =

1

ω
µ→!↑1µ→ 1

ω
µ→!↑1A→ε↓ → 1

2ω

(
µ→ → ε↓→A

)
!↑1

(
µ→A→ε↓)

=
1

2ω
µ→!↑1µ→ 1

ω
µ→!↑1A→ε↓ +

1

2ω

(
2µ→!↑1A→ε↓ → ε↓→A!↑1A→ε↓

)

=
1

2ω
µ→!↑1µ→ 1

2ω
ε↓→A!↑1A→ε↓

.

(A.7)

The second term can be equivalently written as →ω

2

(
→ 1

ω
!↑1A→ε↓

)→
!
(
→ 1

ω
!↑1A→ε↓

)
, in which

→ 1
ω
!↑1A→ε↓ is the portfolio holdings attributable to constraints.

A.2 Proof of Proposition 2

We first observe that, conditioned on X, the investor’s optimization problem in (1) remains the

same and, therefore, the portfolio holdings and Lagrange multipliers are given by (2) with static

constraints A replaced by constraints that depend on characteristics A(X):

ω↓ =
1

ω
!↑1

(
µ→A(X)→ε↓) (A.8)

ε↓ =
(
A(X)!↑1A(X)→

)↑1 (
A(X)!↑1µ→ ωb

)
. (A.9)

Therefore, the conditional expected return is given by:

E
[
ω↓→r|X

]
= µ→

Xω↓ = µ→
XωMVO + µ→

XωCSTR

= µ→
XωMVO + µ→ωCSTR + (µ→

X → µ→)ωCSTR,
(A.10)

which proves (6). To get explicit expressions for each term, we have:

µ→
XωMVO =

1

ω
µ→
X!↑1µ (A.11)

µ→ωCSTR = →1

ω
µ→!↑1A(X)→ε↓ (A.12)

(µ→
X → µ→)ωCSTR = →1

ω
(µ→

X → µ→)!↑1A(X)→ε↓
. (A.13)

The conditional expected utility consists of two parts. The decomposition of the expected return
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is given by (A.10). Therefore, the conditional expected utility can be decomposed by:

µ→
Xω↓ → ω

2
ω↓→!Xω↓ = µ→

XωMVO + µ→ωCSTR + (µ→
X → µ→)ωCSTR

→ ω

2
(ωMVO + ωCSTR)

→!X (ωMVO + ωCSTR)

= µ→
XωMVO + µ→ωCSTR + (µ→

X → µ→)ωCSTR

→ ω

2
ω→

MVO!XωMVO → ω

2
ω→

CSTR!XωCSTR → ωω→
MVO!XωCSTR

= µ→
XωMVO → ω

2
ω→

MVO!XωMVO

+ µ→ωCSTR → ω

2
ω→

CSTR!XωCSTR

+ (µ→
X → µ→)ωCSTR → ωω→

MVO!XωCSTR

= µ→
XωMVO → ω

2
ω→

MVO!XωMVO

+ µ→ωCSTR → ω

2
ω→

CSTR!ωCSTR → ω

2
ω→

CSTR (!X →!)ωCSTR

+ (µ→
X → µ→)ωCSTR → ωω→

MVO!ωCSTR → ωω→
MVO (!X →!)ωCSTR

(1)
= µ→

XωMVO → ω

2
ω→

MVO!XωMVO

→ ω

2
ω→

CSTR!ωCSTR

+ (µ→
X → µ→)ωCSTR → ω

2
ω→

CSTR (!X →!)ωCSTR → ωω→
MVO (!X →!)ωCSTR

= µ→
XωMVO → ω

2
ω→

MVO!XωMVO

→ ω

2
ω→

CSTR!ωCSTR

+ (µ→
X → µ→)ωCSTR → ω

(
1

2
ω→

CSTR + ω→
MVO

)
(!X →!)ωCSTR.

(A.14)

Here step (1) follows from the fact that

ω→
MVO!ωCSTR =

1

ω
µ→!↑1!ωCSTR =

1

ω
µ→ωCSTR.

This proves (7). To get explicit expressions for each term, we have:

µ→
XωMVO → ω

2
ω→

MVO!XωMVO =
1

ω
µ→
X!↑1µ→ 1

2ω

(
!↑1µ

)→
!X

(
!↑1µ

)
, (A.15)

→ω

2
ω→

CSTR!ωCSTR = →ω

2

(
1

ω
ε↓→A(X)!↑1

)
!

(
1

ω
!↑1A(X)→ε↓

)
= → 1

2ω
ε↓→A(X)!↑1A(X)→ε↓

,

(A.16)
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(µ→
X → µ→)ωCSTR → ω

(
1

2
ω→

CSTR + ω→
MVO

)
(!X →!)ωCSTR

= →1

ω
(µ→

X → µ→)!↑1A(X)→ε↓ → 1

ω

(
!↑1µ+

1

2
!↑1A(X)→ε↓

)→
(!X →!)!↑1A(X)→ε↓

.

(A.17)

A.3 Proof of Proposition 3

Normal case. We first prove the normal case under Assumption 2. The conditional distribution,

r|X, is also normal. To compute its conditional expected value, we first find a constant matrix C

such that Z ↓ r→CX is uncorrelated with X. For this to be true, we require

0 = Cov (Z,X) = Cov (r→CX,X) = Cov(r,X)→C · Cov(X,X), (A.18)

which yields:

C = Cov(r,X)Cov(X,X)↑1
. (A.19)

Therefore, the conditional expected return can be written as:

µX = E[r|X] = E[Z+CX|X] = E[Z|X] +CX

(1)
= E[Z] +CX = E[r] +C(X→ E[X])

= µ+Cov(r,X)Cov(X,X)↑1(X→ X̄).

(A.20)

Similarly, the conditional covariance matrix of r|X can be written as:

!X = Cov(r|X) = Cov(Z+CX|X) = Cov(Z|X)

(1)
= Cov(Z) = Cov(r→CX) = Cov(r)→CCov(X,X)C→

= !→ Cov(r,X)Cov(X,X)↑1Cov(r,X)→.

(A.21)

Here step (1) in (A.20) and (A.21) follows from the fact that Z and X are uncorrelated multivariate

Gaussian random vectors and, therefore, are independent. In both cases, they depend on Cov(r,X)

and Cov(X,X).

Under Assumption 3, we can further simplify (A.20):

µX = µ+
(
ϖ1ϱrϱx1

I · · · ϖJϱrϱxJ I
)





1
ε2
x1
I 0 0

0
. . . 0

0 0 1
ε2
xJ

I









x1 → x̄1
...

xJ → x̄J



 ,

= µ+
J∑

j=1

ϖjϱr(xj → x̄j)

ϱxj

,

(A.22)
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which completes the proof of (12). Similarly, we can further simplify (A.21):

!X = !→
(
ϖ1ϱrϱx1

I · · · ϖJϱrϱxJ I
)





1
ε2
x1
I 0 0

0
. . . 0

0 0 1
ε2
xJ

I









ϖ1ϱrϱx1
I

...

ϖJϱrϱxJ I



 ,

= !→
J∑

j=1

ϖ
2
j
ϱ
2
rϱ

2
xj
I

ϱ2
xj

= !→
J∑

j=1

ϖ
2
jϱ

2
rI,

(A.23)

which completes the proof of (13).

MVT case. Next, we prove the MVT case under Assumption 2’. The properties of MVT distri-

butions are outlined in Zellner (1971, p. 383–389) and Fang, Kotz, and Ng (1990, p. 42–47).

The conditional distribution of MVT is still MVT. In particular, Ding (2016, p. 294) shows

that:

r|X ↔ MVT
(
µ+Vr,XV↑1

X,X(X→ X̄), s(V →Vr,XV↑1
X,XVX,r), ς +NJ

)
, (A.24)

where

s =
ς + d1

ς +NJ
and d1 = (X→ X̄)→V↑1

X,X(X→ X̄). (A.25)

Because Cov(r,X) = ϑ

ϑ↑2Vr,X and Cov(X,X) = ϑ

ϑ↑2VX,X, the conditional expected value is:

µX = E[r|X] = µ+Vr,XV↑1
X,X(X→ X̄)

= µ+
ς → 2

ς
Cov(r,X) · ς

ς → 2
Cov(X,X)↑1(X→ X̄)

= µ+Cov(r,X)Cov(X,X)↑1(X→ X̄),

(A.26)

which is the same form as the normal case in (A.20). The proof of (15) therefore follows from the

same proof as the normal case in (A.22).

The conditional covariance matrix is:

!X = Cov(r|X)

=
ς +NJ

ς +NJ → 2

ς + d1

ς +NJ

(
ς → 2

ς
!→ ς → 2

ς
Cov(r,X)

ς

ς → 2
Cov(X,X)↑1 ς → 2

ς
Cov(X, r)

)

=
(ς + d1)(ς → 2)

(ς +NJ → 2)ς

(
!→ Cov(r,X)Cov(X,X)↑1Cov(r,X)→

)
,

(A.27)

which is the same form as the normal case in (A.21) except for the scaling factor (ϑ+d1)(ϑ↑2)
(ϑ+NJ↑2)ϑ . Under
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Assumption 3, VX,X is a diagonal matrix and

d1 = (X→ X̄)→V↑1
X,X(X→ X̄)

= N


ϱ
↑2
x1

1

N

N∑

i=1

(x1i → x̄1)
2 + · · ·+ ϱ

↑2
xJ

1

N

N∑

i=1

(xJi → x̄J)
2


,

(A.28)

which converges to NJ as N increases without bound. Therefore,

(ς + d1)(ς → 2)

(ς +NJ → 2)ς
p
=

(ς +NJ)(ς → 2)

(ς +NJ → 2)ς
=

(1 + ς/NJ)

1 + (ς → 2)/NJ
(1→ 2/ς)

p
= (1→ 2/ς) (A.29)

where
p
= denotes equality in probability as N increases without bound. Combining (A.27) and

(A.29) we have:

!X = Cov(r|X)
p
= (1→ 2/ς)

(
!→ Cov(r,X)Cov(X,X)↑1Cov(r,X)→

)
. (A.30)

The proof of (16) therefore follows from the same proof as the normal case in (A.23).

A.4 Proof of Proposition 4

Substituting the excess return from information in Proposition 3 into the expected return decom-

position of Proposition 2, we have:

E
[
ω↓→r|X

]
= µ→

Xω↓ = µ→
XωMVO + µ→ωCSTR + (µ→

X → µ→)ωCSTR

= µ→
XωMVO + µ→ωCSTR +

J∑

j=1

ϖjϱr
(xj → x̄j)ωCSTR

ϱxj

,

(A.31)

which completes the proof of (17).

Substituting the excess return and excess covariance from information in Proposition 3 into the
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expected utility decomposition of Proposition 2, we have:

µ→
Xω↓ → ω

2
ω↓→!Xω↓ = µ→

XωMVO → ω

2
ω→

MVO!XωMVO

→ ω

2
ω→

CSTR!ωCSTR

+ (µ→
X → µ→)ωCSTR → ωω→

SHR(!X →!)ωCSTR

= µ→
XωMVO → ω

2
ω→

MVO!XωMVO

→ ω

2
ω→

CSTR!ωCSTR

+




J∑

j=1

ϖjϱr
(xj → x̄j)ωCSTR

ϱxj

→ ωω→
SHR



→
J∑

j=1

ϖ
2
jϱ

2
rI



ωCSTR





= µ→
XωMVO → ω

2
ω→

MVO!XωMVO

→ ω

2
ω→

CSTR!ωCSTR

+
J∑

j=1

(
ϖjϱr

(xj → x̄j)ωCSTR

ϱxj

+ ωϖ
2
jϱ

2
rω

→
SHRωCSTR

)
,

(A.32)

which completes the proof of (18). When Assumption 2’ is true, the expected utility decomposition

holds when N and ς increase without bound.

A.5 Proof of Proposition 5

We first need the following two lemmas to prove Proposition 5.

Lemma A.1. When µ is unknown and ! is known, consider the following prior on µ:

φ0 : µ ↔ N

(
µ0,

!

↼

)
,

where µ0 is the prior mean, and ↼ is a precision hyperparameter. The predictive distribution of the

return is

r̃ ↔ N

(
µ̃0, !̃0

)
,

where

µ̃0 =
T µ̂+ ↼µ0

T + ↼
and !̃0 =

(
1 +

1

T + ↼

)
!.

Lemma A.2. When µ and ! are both unknown, consider the following prior on µ and !:

φ0 : µ | ! ↔ N

(
µ0,

!

↼

)
, ! ↔ IW (!0, v0),

where µ0 is the prior mean, !0 is the prior covariance matrices, ↼ and v0 are hyperparameters,
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and IW stands for the Inversed-Wishart distribution. The predictive distribution of the return is

r̃ ↔ MV T

(
µ̃0,

v0 + T →N → 1

v0 + T →N + 1
!̃0, v0 + T →N + 1

)
,

where

µ̃0 =
T µ̂+ ↼µ0

T + ↼
,

!̃0 =

(
1 +

1

T + ↼

)
1

v0 + T →N → 1

(
!0 + T !̂+

T ↼

T + ↼
(µ0 → µ̂)(µ0 → µ̂)→

)
.

Proof of Lemma A.1. Based on the prior φ0, we first calculate the predictive distribution of r.

P(r|!T ) ↗ exp


→1

2


tr

[
!↑1(r→ µ)(r→ µ)→

]

↘ exp


→1

2


tr

[
!↑1

↼(µ→ µ0)(µ→ µ0)
→]



↘ exp


→1

2


tr


!↑1

T∑

t=1

(rt → µ)(rt → µ)→


↗ exp


→1

2


tr

[
!↑1

(
T (µ→ µ̂)(µ→ µ̂)→ + ↼(µ→ µ0)(µ→ µ0)

→ + (µ→ r)(µ→ r)→
)]

↗ exp


→1

2


tr


!↑1

(
(T + ↼ + 1)

(
µ→ T µ̂+ ↼µ0 + r

T + ↼ + 1

)(
µ→ T µ̂+ ↼µ0 + r

T + ↼ + 1

)→)

+
T + ↼

T + ↼ + 1

(
r→ T µ̂+ ↼µ0

T + ↼

)(
r→ T µ̂+ ↼µ0

T + ↼

)→
,

where µ̂ = 1
T


T

t=1 rt. Integrating over the posterior distribution of µ, we derive:

P(r|!T ) ↗ exp


→1

2


tr


!↑1 T + ↼

T + ↼ + 1

(
r→ T µ̂+ ↼µ0

T + ↼

)(
r→ T µ̂+ ↼µ0

T + ↼

)→
.

This implies that the predictive distribution of r is also normally distributed with mean and co-

variance given by:

µ̃0 =
T µ̂+ ↼µ0

T + ↼

!̃0 =

(
1 +

1

T + ↼

)
!.
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Proof of Lemma A.2. Based on the prior φ0, we first calculate the predictive distribution of r.

P(r|!T ) ↗ |!|↑
1

2 exp


→1

2


tr

[
!↑1(r→ µ)(r→ µ)→

]

↘ |!|↑
1

2 exp


→1

2


tr

[
!↑1

↼(µ→ µ0)(µ→ µ0)
→]



↘ |!|↑
v0+N+1

2 exp


→1

2


tr

[
!↑1!0

]

↘ |!|↑
T
2 exp


→1

2


tr


!↑1

T∑

t=1

(rt → µ)(rt → µ)→


↗ |!|↑
v0+N+T+3

2 exp


→1

2


tr


!↑1

(
!0 + T !̂+

T ↼

T + ↼
(µ0 → µ̂)(µ0 → µ̂)→

+(T + ↼ + 1)

(
µ→ T µ̂+ ↼µ0 + r

T + ↼ + 1

)(
µ→ T µ̂+ ↼µ0 + r

T + ↼ + 1

)→)

+
T + ↼

T + ↼ + 1

(
r→ T µ̂+ ↼µ0

T + ↼

)(
r→ T µ̂+ ↼µ0

T + ↼

)→
.

where !̂ = 1
T


T

t=1(rt → µ̂)(rt → µ̂)→. Integrating over the posterior distribution of µ, we derive:

P(r|!T ) ↗ |!|↑
v0+N+T+2

2 exp


→1

2


tr


!↑1(!0 + T !̂+

T ↼

T + ↼
(µ0 → µ̂)(µ0 → µ̂)→

+
T + ↼

T + ↼ + 1

(
r→ T µ̂+ ↼µ0

T + ↼

)(
r→ T µ̂+ ↼µ0

T + ↼

)→
.

The posterior distribution of ! is Inversed-Wishart with a degree of freedom of v0 + T + 1. Inte-

grating over the posterior distribution of !, we derive:

P(r|!T ) ↗
!0 + T !̂+

T ↼

T + ↼
(µ0 → µ̂)(µ0 → µ̂)→

+
T + ↼

T + ↼ + 1

(
r→ T µ̂+ ↼µ0

T + ↼

)(
r→ T µ̂+ ↼µ0

T + ↼

)→
↑ v0+T+1

2

.

This implies that the predictive distribution of r follows a MVT distribution with a degree of

freedom of v0 + T →N + 1, and its mean and covariance are given by:

µ̃0 =
T µ̂+ ↼µ0

T + ↼
,

!̃0 =

(
1 +

1

T + ↼

)
1

v0 + T →N → 1

(
!0 + T !̂+

T ↼

T + ↼
(µ0 → µ̂)(µ0 → µ̂)→

)
.

Proof of Proposition 5 with known !. With Lemma A.1, we derive the predictive mean and

covariance of r̃ with the prior φ1:

µ̃1 =
T µ̂+ ↼µ1

T + ↼
and !̃1 = (1 +

1

T + ↼
)!, (A.33)
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and the predictive mean and covariance of r̃ with the prior φ2:

µ̃2 =
T µ̂+ ↼µ2

T + ↼
and !̃2 = (1 +

1

T + ↼
)!. (A.34)

In order to have ω̃↓
1 = ω̃↓

2, we combine (A.33)–(A.34) with (21)–(22) to derive

µ̃1 →A→ε̃ = µ̃2.

Rearranging terms, we have

µ2 = µ1 →A→ (A!↑1A→)↑1
(
A!↑1µ1 →

(
1 +

1

↼

)
ωb

)
→ T

↼
A→ (A!↑1A→)↑1 (

A!↑1µ̂→ ωb
)

= µ1 →A→ε̃1,PR → T

↼
A→ε̃1,DT ,

which proves (23).

Proof of Proposition 5 with unknown !. With Lemma A.2, we derive the predictive mean

and covariance of r̃ with the prior φ1:

µ̃1 =
T µ̂+ ↼µ1

T + ↼
,

!̃1 =

(
1 +

1

T + ↼

)
1

v0 + T →N → 1

(
!1 + T !̂+

T ↼

T + ↼
(µ1 → µ̂)(µ1 → µ̂)→

)
,

(A.35)

and the predictive mean and covariance of r̃ with the prior φ2:

µ̃2 =
T µ̂+ ↼µ2

T + ↼
,

!̃2 =

(
1 +

1

T + ↼

)
1

v0 + T →N → 1

(
!2 + T !̂+

T ↼

T + ↼
(µ2 → µ̂)(µ2 → µ̂)→

)
.

(A.36)

We combine (A.35)–(A.36) with (21)–(22) to derive the following su”cient condition for ω̃↓
1 = ω̃↓

2:

!̃1 = !̃2 and µ̃1 →A→ε̃ = µ̃2.

In order for !̃1 = !̃2, we simply need

!2 = !1 +
T ↼

T + ↼
(µ1 → µ2)(µ1 + µ2 → 2µ̂)→,

10



which proves (25). In order for µ̃1→A→ε1 = µ̃2, we plug in the predictive moments in (A.35)–(A.36)

to derive

µ2 = µ1 →A→
(
A!̃

↑1
1 A→

)↑1 (
A!̃

↑1
1 µ1 → ωb

)

→ T

↼
A→

(
A!̃

↑1
1 A→

)↑1 (
A!̃

↑1
1 µ̂→ ωb

)

= µ1 →A→ε̃2,PR → T

↼
A→ε̃2,DT ,

which proves (24).

A.6 Proof of Proposition 6

When there is a single constraint A(x) = x→, the Lagrange multiplier, ε↓, is a scalar:

ε
↓ =

x→!↑1µ→ ωb

x→!↑1x
. (A.37)

Substituting this Lagrange multiplier into the decomposition of portfolio holdings in (3) yields:

ω↓ =
1

ω
!↑1µ→ 1

ω
ε
↓!↑1x =

1

ω
!↑1µ→ 1

ω

x!↑1µ→ ωb

x→!↑1x
!↑1x. (A.38)

Substituting (A.38) into the last term (the information component) of the expected return decom-

position in (17) and assuming the expected value x̄ = E[x] = 0 yields:

ϖϱr

ϱx
x→ωCSTR =

ϖϱr

ϱx
x→

(
→1

ω
ε
↓!↑1x

)

=
ϖϱr

ϱx
x→

(
→1

ω

x!↑1µ→ ωb

x→!↑1x
!↑1x

)

=
ϖϱr

ϱx

(
→1

ω

x!↑1µ→ ωb

x→!↑1x
x→!↑1x

)

=
ϖϱr

ϱx

(
b→ x→!↑1µ/ω

)
.

(A.39)

Therefore, the full decomposition of expected return in (17) reduces to:

E
[
ω↓→r|x

]
= µ→

XωMVO + µ→ωCSTR +
ϖϱr

ϱx
x→ωCSTR

=
1

ω
µ→
X!↑1µ→ 1

ω
ε
↓µ→!↑1x+

ϖϱr

ϱx

(
b→ x→!↑1µ/ω

)

=
1

ω
µ→
X!↑1µ+

1

ω

x→!↑1µ

x→!↑1x

(
ωb→ x→!↑1µ

)
+

ϖϱr

ϱx

(
b→ x→!↑1µ/ω

)

=
1

ω
µ→
X!↑1µ+

x→!↑1µ

x→!↑1x

(
b→ x→!↑1µ/ω

)
+

ϖϱr

ϱx

(
b→ x→!↑1µ/ω

)
.

(A.40)

Note that both (A.39) and (A.40) assume that the Lagrange multiplier ε↓ ≃= 0. When the constraint

is not binding for inequality constraints, (A.39) becomes zero and the last two terms of (A.40)
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vanish.

A.7 Proof of Proposition 7

When x is a vector of binary random variables following the Bernoulli distribution, we need to

quantify the excess expected return, µx → µ, in (6) of Proposition 2. The i-th element of µx → µ

is given by:

µi,x → µi = E[ri|x]→ E[ri]
(1)
= E[ri|xi]→ E[ri]
(2)
= xi (E[ri|xi = 1]→ E[ri]) + (1→ xi) (E[ri|xi = 0]→ E[ri]) ,

(A.41)

for i = 1, 2, . . . , N . Here step (1) follows from Assumption 3 which guarantees that there is no

cross-correlation between the return and characteristic value of di#erent assets. Step (2) uses the

fact that xi is either 1 or 0.

To compute E[ri|xi = 1], we consider the correlation between the characteristic value and return

of the i-th asset:

ϖ ↓ Corr(xi, ri) =
Cov(xi, ri)
Var(xi)Var(ri)

=
E[xiri]→ E[xi]E[ri]

Var(xi)Var(ri)

(1)
=

E[ri|xi = 1]P(xi = 1)→ P(xi = 1)E[ri]
P(xi = 1)(1→ P(xi = 1))Var(ri)

=
(E[ri|xi = 1]→ E[ri])↽xi=1

↽xi=1(1→ ↽xi=1)ϱ2
r

=
E[ri|xi = 1]→ E[ri]

ϱr


↽xi=1

↽xi=0
.

(A.42)

Here step (1) follows from the fact that xi follows the Bernoulli distribution, whose variance is

given by P(xi = 1)(1→ P(xi = 1)). We use ↽xi=1 = P(xi = 1) and ↽xi=0 = P(xi = 0) to denote the

marginal probability of the i-th asset being included or excluded from the portfolio.

Equation (A.42) implies that

E[ri|xi = 1]→ E[ri] = ϖϱr


↽xi=0

↽xi=1
. (A.43)

To compute E[ri|xi = 0], we observe that:

E[ri] = E[ri|xi = 1]↽xi=1 + E[ri|xi = 0]↽xi=0, (A.44)
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which yields:

E[ri|xi = 0]→ E[ri] = → (E[ri|xi = 1]→ E[ri])
↽xi=1

↽xi=0
= →ϖϱr


↽xi=1

↽xi=0
, (A.45)

Substituting (A.43) and (A.45) into (A.41) yields:

µi,x → µi = ϖϱr


xi


↽xi=0

↽xi=1
→ (1→ xi)


↽xi=1

↽xi=0


(A.46)

for i = 1, 2, . . . , N . Therefore,

µx → µ = ϖϱr (x⇐ u→ (1→ x)⇐ v) , (A.47)

where

u =


↽x1=0

↽x1=1
, . . . ,


↽xN=0

↽xN=1

→

, v =


↽x1=1

↽x1=0
, . . . ,


↽xN=1

↽xN=0

→

.

Substituting this into (6) of Proposition 2 yields:

E
[
ω↓→r|x

]
= µ→

xωMVO + µ→ωCSTR + (µ→
x → µ→)ωCSTR

= µ→
xωMVO + µ→ωCSTR + ϖϱr (x⇐ u→ (1→ x)⇐ v)→ωCSTR,

(A.48)

which completes the proof of (29).
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B Additional Technical Results

In this Appendix, we provide additional technical results.

B.1 General Dependence between Returns and Characteristics

In this section, we relax Assumption 3 and the results in Section 2.3. In particular, we derive a

version of Propositions 3–4 under Assumption 2 (normality). We allow for multiple characteristics

of the same asset to be correlated with each other, and general dependence between returns and

characteristics. In particular, we replace the covariance matrix of [ r→ x→
1 · · · x→

J
] in (11) by the

following:

Assumption B.1. The covariance matrix of [ r→ x→
1 · · · x→

J
] is given by:





! Cov (r, (x→
1, . . . ,x

→
J
))

Cov ((x→
1, . . . ,x

→
J
), r)





ϱ
2
x1
I ϱx1

ϱx2
↼12I · · · ϱx1

ϱxJ ↼1JI

ϱx2
ϱx1

↼21I ϱ
2
x2
I · · · ϱx2

ϱxJ ↼2JI
...

...
. . .

...

ϱxJϱx1
↼J1I ϱxJϱx2

↼J,2I · · · ϱ
2
xJ
I









(B.1)

where ↼ij ↓ Corr(rik, xjk) is the correlation between the i-th and j-th characteristic values of the

k-th asset, for i, j ⇒ {1, 2, . . . , J} and k ⇒ {1, 2, . . . , N}.

Recall that X represents the (N ↘ J)-dimensional vector [x→
1 · · · x→

J
]→, and we use X̄ ↓

[ x̄→
1 · · · x̄→

J
]→ to denote the expected value of X. The following result generalizes Proposition 3

under the weaker Assumption B.1.

Proposition B.1. Under the covariance structure in (B.1) in Assumption B.1, r|X is normally

distributed with an expected value given by:

µX = E[r|X] = µ+
J∑

j=1

Cov(r,xj)(xj → x̄j)

ϱ2
xj
(1→R

2
j
)

→
∑

i ↔=j

1↗i,j↗J

⇀ijCov(r,xi)(xj → x̄j)

ϱ2
xi
(1→R

2
i
)

, (B.2)

and a covariance matrix given by:

!X = Cov(r|X) = !→
J∑

j=1

Cov(r,xj)Cov(r,xj)→

ϱ2
xj
(1→R

2
j
)

+
∑

i ↔=j

1↗i,j↗J

⇀ijCov(r,xi)Cov(r,xj)→

ϱ2
xi
(1→R

2
i
)

, (B.3)

where Cov(r,xj) is the N ↘ N covariance matrix between two N -dimensional vectors, r and xj,

and ⇀ij and R
2
i
are defined as follows. Let

x[↑i] ↓ [x1 · · · xi↑1 xi+1 · · · xJ ]
→ (B.4)
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denote the (J → 1)-dimensional vector of an asset’s J → 1 characteristics not including the i-th one.

We consider a hypothetical regression in which xi is projected onto the (J → 1)-dimensional space

of x[↑i]. Then,

ϑi =
[
Cov

(
x[↑i],x[↑i]

)]↑1
Cov

(
x[↑i], xi

)
(B.5)

is the (J → 1)-dimensional vector of regression coe!cients and ⇀ij is the element of ϑi that corre-

sponds to xj; and

R
2
i =

Cov
(
ϑ

→
ix[↑i],ϑ

→
ix[↑i]

)

ϱ2
xi

=
Cov

(
x[↑i], xi

)→ [
Cov

(
x[↑i],x[↑i]

)]↑1
Cov

(
x[↑i], xi

)

ϱ2
xi

(B.6)

is the R-squared of the regression. Here

Cov
(
x[↑i], xi

)
=





ϱx1
ϱxi↼1i
...

ϱxi↑1
ϱxi↼i↑1,i

ϱxi+1
ϱxi↼i+1,i
...

ϱxJϱxi↼J,i





and

Cov
(
x[↑i],x[↑i]

)
=





ω2

x1
· · · ωx1ωxi→1ε1,i↑1 ωx1ωxi+1ε1,i+1 · · · ωx1ωxJ ε1J

...
. . .

...
...

. . .
...

ωxi→1ωx1εi↑1,1 · · · ω2

xi→1
ωxi→1ωxi+1εi↑1,i+1 · · · ωxi→1ωxJ εi↑1,J

ωxi+1ωx1εi+1,1 · · · ωxi+1ωxi→1εi+1,i↑1 ω2

xi+1
· · · ωxi+1ωxJ εi+1,J

...
. . .

...
...

. . .
...

ωxJωx1εJ1 · · · ωxJωxi→1εJ,i↑1 ωxJωxi+1εJ,i+1 · · · ω2

xJ





.

Proposition B.1 also allows for explicit decompositions of the expected return and utility of

the portfolio by substituting (B.2)–(B.3) into Proposition 2, which gives the following generalized

result of Proposition 4 under the weaker Assumption B.1.

Proposition B.2. Under the covariance structure in (B.1) in Assumption B.1 and conditioned on

information in X that is used to form constraints, A(X), the following decompositions hold for the

optimal portfolio, ω↓.

1. Expected return decomposition.

E
[
ω↓→r|X

]
= µ→

Xω↓ = µ→
XωMVO + µ→ωCSTR

+
J∑

j=1

ω→
CSTR

Cov(r,xj)(xj → x̄j)

ϱ2
xj
(1→R

2
j
)

→
∑

i ↔=j

1↗i,j↗J

ω→
CSTR

⇀ijCov(r,xi)(xj → x̄j)

ϱ2
xi
(1→R

2
i
)

.
(B.7)
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2. Expected utility decomposition.

µ→
Xω↓ → ω

2
ω↓→!Xω↓ = µ→

XωMVO → ω

2
ω→

MVO!XωMVO → ω

2
ω→

CSTR!ωCSTR

+
J∑

j=1


ω→

CSTR
Cov(r,xj)(xj → x̄j)

ϱ2
xj
(1→R

2
j
)

+ ωω→
SHR

Cov(r,xj)Cov(r,xj)→

ϱ2
xj
(1→R

2
j
)

ωCSTR



→
∑

i ↔=j

1↗i,j↗J

(
ω→

CSTR
⇀ijCov(r,xi)(xj → x̄j)

ϱ2
xi
(1→R

2
i
)

+ ωω→
SHR

⇀ijCov(r,xi)Cov(r,xj)→

ϱ2
xi
(1→R

2
i
)

ωCSTR

)
.

(B.8)

Next, we state two corollaries of Proposition B.1. In particular, we provide additional intuition

for the information contribution from portfolio constraints by separating the e#ect of general de-

pendence between returns and characteristics from the e#ect of dependent characteristics of the

same asset.

First, if we allow for general dependence between returns and characteristics, but multiple char-

acteristics of the same asset are independent of each other, the covariance matrix of [ r→ x→
1 . . . x→

J
]

can be written as: 



! Cov (r, (x→
1, . . . ,x

→
J
))

Cov ((x→
1, . . . ,x

→
J
), r)





ϱ
2
x1
I 0 0

0
. . . 0

0 0 ϱ
2
xJ
I









. (B.9)

Corollary B.1. Under the covariance structure in (B.9), r|X is normally distributed with an

expected value given by:

µX = E[r|X] = µ+
J∑

j=1

Cov(r,xj)

ϱxj

(xj → x̄j)

ϱxj

, (B.10)

and a covariance matrix given by:

!X = Cov(r|X) = !→
J∑

j=1

Cov(r,xj)Cov(r,xj)→

ϱ2
xj

, (B.11)

where Cov(r,xj) is the N ↘N covariance matrix between two N -dimensional vectors, r and xj.

Second, if we allow for multiple characteristics of the same asset to be correlated with each

other, but characteristics of one firm are independent of returns of another firm, the covariance
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matrix of [ r→ x→
1 . . . x→

J
] can be written as:





! ϖ1ϱrϱx1
I ϖ2ϱrϱx2

I · · · ϖJϱrϱxJ I

ϖ1ϱrϱx1
I

ϖ2ϱrϱx2
I

...

ϖJϱrϱxJ I





ϱ
2
x1
I ϱx1

ϱx2
↼12I · · · ϱx1

ϱxJ ↼1JI

ϱx2
ϱx1

↼21I ϱ
2
x2
I · · · ϱx2

ϱxJ ↼2JI
...

...
. . .

...

ϱxJϱx1
↼J1I ϱxJϱx2

↼J,2I · · · ϱ
2
xJ
I









. (B.12)

Corollary B.2. Under the covariance structure in (B.12), r|X is normally distributed with an

expected value given by:

µX = E[r|X] = µ+
J∑

j=1

ϖjϱr(xj → x̄j)

ϱxj (1→R
2
j
)

→
∑

i ↔=j

1↗i,j↗J

⇀ijϖiϱr(xj → x̄j)

ϱxi(1→R
2
i
)

, (B.13)

and a covariance matrix given by:

!X = Cov(r|X) = !→
J∑

j=1

ϖ
2
j
ϱ
2
rI

(1→R
2
j
)
+

∑

i ↔=j

1↗i,j↗J

⇀ijϖiϖjϱxjI

ϱxi(1→R
2
i
)
, (B.14)

where ⇀ij and R
2
i
are defined in Proposition B.1.

Similarly, it is straightforward to derive corollaries of Proposition B.2 under the covariance

structures in (B.9) and (B.12).

Proof of Proposition B.1. We recall from (A.20)–(A.21) in the proof of Proposition 3 in Section

A.3 that both µX and !X depend critically on Cov(X,X)↑1:

µX = µ+Cov(r,X)Cov(X,X)↑1(X→ X̄),

!X = !→ Cov(r,X)Cov(X,X)↑1Cov(r,X)→.
(B.15)

Therefore, the key to the proof of Proposition B.1 is to derive analytical expressions of Cov(X,X)↑1

under covariance structure (B.1) in Assumption B.1.

For notational simplicity we define Q ↓ Cov(X,X)↑1. Because Cov(X,X) is a block matrix

under the covariance structure in (B.1), and linear operations of block matrices are equivalent to

element-wise operations, we treat Cov(X,X) and Q as J ↘ J matrices for notational simplicity.

We first calculate the explicit solution of the first row of Q. We express Q as:

Q =


Q11 Q12

Q21 Q22


(B.16)
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where the sizes of the sub-blocks Q11, Q12, Q21, and Q22 are 1 ↘ 1, 1 ↘ (J → 1), (J → 1) ↘ 1, and

(J → 1)↘ (J → 1), respectively. Therefore, we have:

I = Q · Cov(X,X)

=


Q11 Q12

Q21 Q22






ϱ
2
x1

ϱx1
ϱx2

↼12 · · · ϱx1
ϱxJ ↼1J

ϱx2
ϱx1

↼21 ϱ
2
x2

· · · ϱx2
ϱxJ ↼2J

...
...

. . .
...

ϱxJϱx1
↼J1 ϱxJϱx2

↼J,2 · · · ϱ
2
xJ





=


Q11 Q12

Q21 Q22


ϱ
2
x1

d
→
1,J↑1

d1,J↑1 CJ↑1


,

(B.17)

where we write the (J → 1)-dimensional vector d1,J↑1 ↓ Cov
(
x[↑1], x1

)
and the (J → 1) ↘ (J → 1)

matrix CJ↑1 ↓ Cov
(
x[↑1],x[↑1]

)
for convenience.

The block-wise calculations of the first row in (B.17) leads to:





Q11ϱ

2
x1

+Q12d1,J↑1 = 1,

Q11d
→
1,J↑1 +Q12CJ↑1 = 0.

(B.18)

After rearranging terms, Q12 and Q11 can be expressed as:





Q11 = (ϱ2

x1
→ d

→
1,J↑1C

↑1
J↑1d1,J↑1)↑1

,

Q12 = →Q11d
→
1,J↑1C

↑1
J↑1.

(B.19)

We observe that the terms in (B.19) correspond to an interpretation of a regression in which

x1 is projected onto the (J → 1)-dimensional space of x[↑1]. The (J → 1)-dimensional vector of

regression coe”cients is given by (B.5):

ϑ1 =
[
Cov

(
x[↑1],x[↑1]

)]↑1
Cov

(
x[↑1], x1

)
= C

↑1
J↑1d1,J↑1, (B.20)

and the R-squared is given by (B.6):

R
2
1 =

Cov
(
x[↑1], x1

)→ [
Cov

(
x[↑1],x[↑1]

)]↑1
Cov

(
x[↑1], x1

)

ϱ2
x1

=
d
→
1,J↑1C

↑1
J↑1d1,J↑1

ϱ2
x1

. (B.21)

Substituting (B.20)–(B.21) into (B.19) leads to:






Q11 =
1

ϱ2
x1
(1→R

2
1)
,

Q12 =
→ϑ

→
1

ϱ2
x1
(1→R

2
1)
.

(B.22)

Finally, we observe that the derivations in (B.16)–(B.22) apply to any row of the matrix Q. By
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symmetry, we have:

Q =





1

ϱ2
x1
(1→R

2
1)

→⇀12

ϱ2
x1
(1→R

2
1)

· · · →⇀1J

ϱ2
x1
(1→R

2
1)

→⇀21

ϱ2
x2
(1→R

2
2)

1

ϱ2
x2
(1→R

2
2)

· · · →⇀2J

ϱ2
x2
(1→R

2
2)

...
...

. . .
...

→⇀J1

ϱ2
xJ
(1→R

2
J
)

→⇀J2

ϱ2
xJ
(1→R

2
J
)

· · · 1

ϱ2
xJ
(1→R

2
J
)
.





(B.23)

Substituting (B.23) into (B.15) completes the proof.

Proof of Proposition B.2. Substituting the excess return and excess covariance from the infor-

mation in Proposition B.1 into the decomposition of Proposition 2 yields the general decomposition

in Proposition B.2 under Assumption B.1.

B.2 Additional Results for Attribution Using Bayesian Portfolio Analysis

In this section, we provide formal statements of our results in Section 3.

B.2.1 General Distributions of Predictive Returns

Proposition B.3 (Conditional Attribution with Information using Predictive Distribution). Under

Assumption 1 and the Bayesian framework to solve for the optimal portfolio in (20), conditioned

on information in X that is used to form constraints A(X), the following decompositions hold for

the optimal portfolio, ω̃↓.

1. Decomposition of the expected predictive return.

E
[
ω̃↓→ r̃|X

]
= µ̃→

Xω̃↓ = µ̃→
Xω̃MVO + µ̃→ω̃CSTR + (µ̃→

X → µ̃→)ω̃CSTR, (B.24)

where

• µ̃→
Xω̃MVO = 1

ω
µ̃→
X!̃

↑1
µ̃: expected return of the unconstrained MVO portfolio.

• µ̃→ω̃CSTR = → 1
ω
µ̃→!̃

↑1
A(X)→ε̃

↓
: components attributable to each constraint treated as

static.

• (µ̃→
X → µ̃→)ω̃CSTR = → 1

ω
(µ̃→

X → µ̃→)!̃
↑1

A(X)→ε̃
↓
: components attributable to information

in constraints.

Here the Lagrange multipliers are given by:

ε̃
↓
=

(
A(X)!̃

↑1
A(X)→

)↑1 (
A(X)!̃

↑1
µ̃→ ωb

)
(B.25)

provided that the feasible region of the constrained optimization problem is nonempty.
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2. Decomposition of the expected utility with respect to the predictive distribution.

µ̃→
Xω̃↓ → ω

2
ω̃↓→!̃Xω̃↓ = µ̃→

Xω̃MVO → ω

2
ω̃→

MVO!̃Xω̃MVO

→ ω

2
ω̃→

CSTR!̃ω̃CSTR

+ (µ̃→
X → µ̃→)ω̃CSTR → ωω̃→

SHR(!̃X → !̃)ω̃CSTR.

(B.26)

• µ̃→
Xω̃MVO→ ω

2 ω̃
→
MVO!̃Xω̃MVO = 1

ω
µ̃→
X!̃

↑1
µ̃→ 1

2ω

(
!̃

↑1
µ̃
)→

!̃X

(
!̃

↑1
µ̃
)
: optimal expected

utility of the unconstrained MVO portfolio.

• →ω

2 ω̃
→
CSTR!̃ω̃CSTR = → 1

2ω ε̃
↓→
A(X)!̃

↑1
A(X)→ε̃

↓
: components attributable to all con-

straints combined together, treated as static.

• (µ̃→
X → µ̃→)ω̃CSTR → ωω̃→

SHR(!̃X → !̃)ω̃CSTR = → 1
ω
(µ̃→

X → µ̃→)!̃
↑1

A(X)→ε̃
↓

→ 1
ω

(
!̃

↑1
µ̃+ 1

2!̃
↑1

A(X)→ε̃
↓)→

(!̃X → !̃)!̃
↑1

A(X)→ε̃
↓
: components attributable to in-

formation in constraints.

Here ω̃SHR is a shrinkage portfolio defined as:

ω̃SHR ↓ ω̃MVO +
1

2
ω̃CSTR = ω̃↓ → 1

2
ω̃CSTR. (B.27)

B.2.2 Specific Distributions of Predictive Returns

The following assumptions replace the population return vector r in Assumptions 2 and 2’ with the

predictive return vector r̃.

Assumption B.2. The predictive return and asset characteristics, (r̃→,x→
1, . . . ,x

→
J
), are jointly nor-

mally distributed.

When µ and ! are both unknown and modeled as random parameters in the Bayesian frame-

work, the predictive density of returns is typically a multivariate Student-t distribution,

r̃ ↔ MVT
(
µ̃, Ṽ, ς

)
, (B.28)

where µ̃ and Ṽ are the location vector and scale matrix, respectively, and ς is the degree of freedom.

Assumption B.2’. The predictive return and asset characteristics follow a multivariate Student-t

distribution: 
r̃

X


↔ MVT


µ̃

X̄


,


Ṽ Ṽr,X

ṼX,r ṼX,X


, ς


.

The next assumption describes the dependence between characteristics and predictive returns.

Assumption B.3. The joint distribution of the predictive return vector r̃ and characteristics X =

[x→
1 x→

2 · · · x→
J
]→ satisfies the following conditions.
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1. The characteristic values are independent both across di”erent assets and between the J dif-

ferent constraints.

2. For the j-th constraint, the correlation between the predictive return and characteristic value

of each asset is ϖ̃j, and there is no cross-correlation between the predictive return and char-

acteristic value of di”erent assets. In other words, the covariance between predictive returns

r̃ and characteristics xj is given by

Cov(r̃,xj) = ϖ̃jϱr̃ϱxjI

, where ϱr̃ is the cross-sectional standard deviation of predictive returns, ϱxj is the cross-

sectional standard deviation of the j-th characteristic, and I is the identity matrix.

This allows us to derive an explicit expression of the information component from predictive

returns similar to that in Proposition 3.

Proposition B.4 (Information Decomposition Using Normal and MVT Predictive Distribution).

Under Assumptions 1 and B.3,

• if Assumption B.2 holds, r̃|X is normally distributed, with an expected value given by:

µ̃X = E[r̃|X] = µ̃+
J∑

j=1

ϖ̃jϱr̃
(xj → x̄j)

ϱxj

, (B.29)

and a covariance matrix given by:

!̃X = Cov(r̃|X) = !̃→
J∑

j=1

ϖ̃
2
jϱr̃2I. (B.30)

• if Assumption B.2’ holds, r̃|X follows a multivariate Student-t distribution:

MVT
(
µ̃+ Ṽr,XṼ↑1

X,X(X→ X̄), s(Ṽ → Ṽr,XṼ↑1
X,XṼX,r), ς +NJ

)
, (B.31)

where

s =
ς + (X→ X̄)→Ṽ↑1

X,X(X→ X̄)

ς +NJ
(B.32)

is a scaling parameter that approaches 1 as the number of assets, N , increases without bound.

In particular, its expected value is given by:

µ̃X = E[r̃|X] = µ̃+
J∑

j=1

ϖ̃jϱr̃
(xj → x̄j)

ϱxj

, (B.33)
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for all N , and its covariance matrix is given by:

!̃X = Cov(r̃|X)
p
= (1→ 2/ς)



!̃→
J∑

j=1

ϖ̃
2
jϱr̃2I



 , (B.34)

where
p
= denotes equality in probability as N increases without bound.

This result can be applied to several classical Bayesian portfolios with normal predictive distri-

butions. For example, Klein and Bawa (1976) consider a model with a known covariance matrix

and non-informative priors on the expected returns of a subset of assets. They derive a normally

distributed predictive density. Jorion (1986) uses an informative conjugate prior and applies the

James–Stein estimator to expected returns, which leads to a multivariate normal predictive density,

conditioned on a known covariance matrix. The optimal portfolio is constructed using the predic-

tive density with a plug-in covariance estimator following Zellner and Chetty (1965). Black and

Litterman (1992) develop a quasi-Bayesian approach that allows investors to incorporate private

views into the market view of expected returns.3 Their framework is concerned with the uncertainty

in the expected value but not the covariance matrix, in which case the predictive distribution is

normal (Kolm and Ritter, 2017, p. 566).

Several other Bayesian and shrinkage portfolios have predictive distributions that follow mul-

tivariate Student-t distributions. Early studies such as Klein and Bawa (1976) and Brown (1978)

use a non-informative di#use prior, P(µ,!) ↗ |!|↑(N+1)/2, which leads to a predictive distribution

with MVT
(
µ̂,


1 + 1/T !̂, T →N

)
. The Bayesian optimal portfolio without constraints is shown

to be ω̃MVO = ω
↑1(T →N → 2)(T + 1)↑1!̂

↑1
µ̂, where µ̂ and !̂ are the sample mean and sample

covariance matrix of the observed returns in the past T periods, respectively.

The conjugate prior is another popular class of priors on (µ,!), which allows their posterior

to take the same form of distribution as the prior. The most common specification considers a

normal prior for µ conditioned on ! and an Inversed-Wishart prior for !, which is adopted by,

for example, Frost and Savarino (1986), Stambaugh (1997), Pástor (2000), Pástor and Stambaugh

(2000), Zhou (2009), and Lai, Xing, and Chen (2011). In this case, the predictive distribution is

still MVT, but the mean and covariance both have more shrinkage towards the fixed level specified

in the prior.

Tu and Zhou (2010) analyze priors on portfolio weights instead of unknown parameters of the

return distribution, a method termed “objective-based priors.” They show that the prior on port-

folio weights can be transformed into a prior on µ and !. In particular, the objective-based prior,

ω ↔ N(ω0,!0!
↑1

/ω), is equivalent to the prior on expected returns, µ ↔ N
(
ω!ω0,ϱ

2
ϖ!/s

2
)
,

where ω0, !0, and ϱϖ are suitable prior constants and s
2 is the average diagonal elements of !.

3Although usually considered a Bayesian approach, it is not entirely Bayesian because the data-generating process

of returns is not fully specified explicitly. See discussions in Avramov and Zhou (2010, p. 30) and Jacquier and

Polson (2011, p. 19). Nonetheless, we can interpret Black and Litterman’s (1992) rule as an update of the prior of

the equilibrium relationship with investors’ private views (Zhou, 2009, p. 39).
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In addition, DeMiguel et al. (2009) show that norm-constrained portfolios can be equivalently

interpreted as Bayesian portfolios where investors have certain prior beliefs on portfolio weights ω.

Their analysis applies very broadly to, for example, the no-short-sale portfolios (Jagannathan and

Ma, 2003), the shrinkage covariance-based portfolios (Ledoit and Wolf, 2003, 2004), and the 1/N

rule (DeMiguel, Garlappi, and Uppal, 2009).

The insights of DeMiguel et al. (2009) and Tu and Zhou (2010) provide an important link

between the literature on robust portfolios with priors on portfolio weights4 and the literature

on Bayesian portfolio analysis. This implies that our attribution framework can, in principle,

be applied to robust portfolio rules that directly impose priors or shrinkage on portfolio weights

through their Bayesian equivalents. However, deriving the specific Bayesian formulation for each

of them is not the focus and beyond the scope of this article.

B.3 Unconditional Attribution

The results in Proposition 2 are conditioned on X. To obtain an unconditional decomposition over

multiple time periods, we must compute the expectation of (6) and (7) with respect to X. This

does not change the decompositions in Proposition 2 because they are linear, and the unconditional

expected return and utility are simple generalizations of the decompositions conditioned on X.

Nonetheless, we summarize the unconditional results formally.

Proposition B.5 (Attribution with Information). Under Assumption 1, the unconditional expected

return and utility can be decomposed into components that are attributable to the unconstrained

MVO portfolio, static constraints, and information, respectively.

1. Expected return decomposition.

E
[
ω↓→r

]
= µ→ωMVO + µ→E [ωCSTR] + E

[
(µ→

X → µ→)ωCSTR
]
. (B.35)

2. Expected utility decomposition.

E
[
ω↓→r

]
→ ω

2
Var

(
ω↓→r

)
= µ→ωMVO → ω

2
ω→

MVO!ωMVO

→ ω

2
E
[
ω→

CSTR!ωCSTR
]

+ E
[
(µ→

X → µ→)ωCSTR → ω→
SHR(!X →!)ωCSTR

]

→ ω

2

(
Var

(
ω→

CSTRµX

)
+ 2Cov

(
ω→

MVOµX,ω→
CSTRµX

))
.

(B.36)

Proof of Proposition B.5. Because the linear decomposition in Proposition 2 is conditioned on

characteristics X, the unconditional decomposition of the expected return follows from the linearity

of expected value with respect to the distribution of X.

4In addition to the studies mentioned above, see, for example, Brodie et al. (2009), Fan, Li, and Yu (2012), and

Fan, Zhang, and Yu (2012), as well as combinations of di!erent portfolio rules such as Kan and Zhou (2007), Tu and

Zhou (2011), Kan, Wang, and Zhou (2022), and Kan and Wang (2023).
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For the unconditional decomposition of the expected utility, we observe that

Var
(
ω↓→r

)
= E

[
Var

(
ω↓→r|X

)]
+Var

(
E
[
ω↓→r|X

])
. (B.37)

Therefore,

E
[
ω↓→r

]
→ ω

2
Var

(
ω↓→r

)
= E

[
E
[
ω↓→r|X

]]
→ ω

2
E
[
Var

(
ω↓→r|X

)]
→ ω

2
Var

(
E
[
ω↓→r|X

])

= E
[
E
[
ω↓→r|X

]
→ ω

2
Var

(
ω↓→r|X

)]
→ ω

2
Var

(
E
[
ω↓→r|X

])

= E
[
µ→
Xω↓ → ω

2
ω↓→!Xω↓

]
→ ω

2
Var

(
µ→
Xω↓)

.

(B.38)

The first term follows from (7) in Proposition 2. The variance in the second term can be further

decomposed into:

Var
(
µ→
Xω↓) = Var

(
µ→
XωMVO + µ→

XωCSTR
)

= ω→
MVOVar

(
µ→
X

)
ωMVO +Var

(
µ→
XωCSTR

)
+ 2Cov

(
µ→
XωMVO,µ

→
XωCSTR

)
.

(B.39)

Substituting both terms back into (B.38) leads to:

E
[
ω↓→r

]
→ ω

2
Var

(
ω↓→r

)
= E[µ→

X]ωMVO → ω

2
ω→

MVOE[!X]ωMVO → ω

2
ω→

MVOVar
(
µ→
X

)
ωMVO

→ ω

2
E[ω→

CSTR!ωCSTR]

+ E
[
(µ→

X → µ→)ωCSTR → ω→
SHR(!X →!)ωCSTR

]

→ ω

2
Var

(
µ→
XωCSTR

)
→ ω

2
Cov

(
µ→
XωMVO,µ

→
XωCSTR

)

= µ→ωMVO → ω

2
ω→

MVO!ωMVO

→ ω

2
E
[
ω→

CSTR!ωCSTR
]

+ E
[
(µ→

X → µ→)ωCSTR → ω→
SHR(!X →!)ωCSTR

]

→ ω

2

(
Var

(
ω→

CSTRµX

)
+ 2Cov

(
ω→

MVOµX,ω→
CSTRµX

))
,

(B.40)

which completes the proof.

B.4 Ex-Post Return Attribution

Propositions 2–4 provide a theoretical framework to decompose expected returns. In practice,

investors can also use this framework to decompose realized returns ex-post, as we show in this

section.

We use an (N↘1)-vector, r̈, to represent the realized returns of all assets. The goal for ex-post

attribution is to decompose the realized portfolio return, r̈→ω↓, into components attributable to the

unconstrained MVO portfolio and each constraint.

If we treat constraints as static, (4) in Proposition 1 already provides such a decomposition as

24



long as the ex-ante expected returns are replaced by ex-post realized returns:

r̈→ω↓ =
1

ω
r̈→!↑1µ→ 1

ω
r̈→!↑1A→ε↓

. (B.41)

• 1
ω
r̈→!↑1µ: realized return that the unconstrained MVO portfolio would have achieved.

• → 1
ω
r̈→!↑1A→ε↓: realized return attributable to constraints.

However, this decomposition does not account for the information contained in each constraint.

Equation (12) in Proposition 3 quantifies the excess return due to information, and we use the

sample version of this decomposition to quantify realized returns attributable to information:

r̈Info =
J∑

j=1

ϖ(r̈, ẍj)ϱ̈r(ẍj → ¨̄xj)

ϱ̈xj

. (B.42)

We can therefore define the static returns as r̈Static ↓ r̈→ r̈Info. This leads to the following decom-

position of realized portfolio returns.

Proposition B.6 (Ex-Post Return Attribution). Under Assumptions 1, 2 (or 2’), and 3, realized

portfolio returns can be decomposed into:

r̈→ω↓ = r̈→ωMVO + r̈→StaticωCSTR +
J∑

j=1

ϖ(r̈, ẍj)ϱ̈r
(ẍ→

j
→ ¨̄x→

j
)ωCSTR

ϱ̈xj

. (B.43)

• r̈→ωMVO = 1
ω
r̈→!↑1µ: realized return of the unconstrained MVO portfolio.

• r̈→StaticωCSTR = → 1
ω
r̈→Static!

↑1A→ε↓: realized return attributable to constraints treated as static.

• ϖ(r̈, ẍj)ϱ̈r
(ẍ→

j↑¨̄x→
j)ωCSTR

ε̈xj
= → 1

ω
ϖ(r̈, ẍj)ϱ̈r

(ẍ→
j↑¨̄x→

j)!
↑1A→ε↓

ε̈xj
: realized return attributable to infor-

mation in the j-th constraint.

It is worth noting that in the last term of (B.43), the information component contains two

terms. The first term reflects the correlation of each characteristic with returns, which captures

the information content of each characteristic. The second term reflects the portfolio holdings

attributable to each constraint, which captures how information is realized into actual returns. As

a result, there are interactions from the information contained in each constraint with the portfolio

holdings attributable to other constraints. Together, they determine the information contribution

to the realized returns.
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Proof of Proposition B.6. Given the decomposition of portfolio holdings in (3), we have:

r̈→ω↓ =
1

ω
r̈→!↑1µ→ 1

ω
r̈→!↑1A→ε↓

=
1

ω
r̈→!↑1µ→ 1

ω
r̈→Static!

↑1A→ε↓ → 1

ω
r̈→Info!

↑1A→ε↓

(1)
=

1

ω
r̈→!↑1µ→ 1

ω
r̈→Static!

↑1A→ε↓ → 1

ω




J∑

j=1

ϖ(r̈, ẍj)ϱ̈r(ẍ→
j
→ ¨̄x→

j
)

ϱ̈xj



!↑1A→ε↓

=
1

ω
r̈→ωMVO +

1

ω
r̈→StaticωCSTR +

1

ω

J∑

j=1

ϖ(r̈, ẍj)ϱ̈r
(ẍ→

j
→ ¨̄x→

j
)ωCSTR

ϱ̈xj

,

(B.44)

where step (1) follows from the definition of r̈Info in (B.42).

B.5 Additional Simulation Results

Factor exposure. Figure B.1 demonstrates the attribution of expected utility for the example

considered in Section 4.1.

Figure B.1a shows the expected utility of the constrained portfolio, which varies between 0.8

and 2.2 as ϖ1 and ϖ2 vary between →0.8 and 0.8. Figure B.1b shows the expected utility of the

unconstrained MVO problem, which is around 1.25 regardless of values of ϖ1 and ϖ2. When ϖ1 and

ϖ2 are high, the expected utility of the constrained portfolio can actually be higher than that of

the unconstrained portfolio.

The di#erence in expected utility between the unconstrained MVO and constrained portfolios

is decomposed into the static and information components. Figure B.1c shows the expected utility

attributable to the two constraints as if they are static, which contributes to the expected utility

with a negative constant value of around →0.1. Figure B.1d shows the expected utility attributable

to information, which is negative in most regions, marked by dark blue. As both ϖ1 and ϖ2 increase,

the expected utility contribution from information increases.

Exclusionary investing. Figure B.2 demonstrates the attribution of expected utility for the

example considered in Section 4.2.

Figure B.2a shows the expected utility of the constrained portfolio, which varies between →0.5

and 2.0 as ϖ1 and ϖ2 vary between →0.8 and 0.8. Figure B.2b shows the expected utility of the

unconstrained MVO problem, which is again around 1.25 regardless of values of ϖ1 and ϖ2.

The di#erence in expected utility between the unconstrained MVO and constrained portfolios

is decomposed into the static and information components. Figure B.2c shows the expected utility

attributable to the exclusionary constraints as if they are static, which contributes to the expected

utility negatively, ranging from →1.0 to →0.2. Figure B.2d shows the expected utility attributable

to information, which increases as ϖ increases, and has a similar pattern to Figure 3d.
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(a) Constrained Optimum (b) Unconstrained MVO

(c) Decomposition: Constraint (Static) (d) Decomposition: Constraint (Information)

Figure B.1: Decomposition of expected utility for the optimization problem in (27) with two con-
straints that depend on random characteristics, as correlations (ϖ1 and ϖ2) between the random
characteristics and asset returns vary. The expected utility of the constrained portfolio (a) is decom-
posed into components corresponding to the unconstrained MVO portfolio (b), static constraints
(c), and information in the constraints (d).
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(a) Constrained Optimum (b) Unconstrained MVO

(c) Decomposition: Constraint (Static) (d) Decomposition: Constraint (Information)

Figure B.2: Decomposition of expected utility for the problem in (30) with one exclusionary con-
straint that depends on random characteristics, as the number of excluded assets (nExclude) and
the correlation (ϖ) between the random characteristic and asset returns vary. The expected utility
of the constrained portfolio (a) is decomposed into components corresponding to the unconstrained
MVO portfolio (b), static constraints (c), and information in the constraints (d).
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B.6 Additional Results for Empirical Analysis

B.6.1 Details of the Construction of ESG Scores

The raw ESG data in the MSCI KLD ESG dataset classifies environmental, social, and governance

performance into 13 di#erent categories, including seven qualitative categories (community, diver-

sity, employee relations, environment, corporate governance, human rights, and product) and six

controversial-business categories (alcohol, gambling, firearms, military, nuclear, and tobacco). The

raw data rates each firm in terms of both strength and concern in the seven qualitative categories,

and only in terms of concern in the six controversial-business categories.

We follow Lins, Servaes, and Tamayo (2017) in aggregating the raw data into an ESG score.

First, we mark all missing ratings as zero. As the maximum number of strengths and concerns for

any given category will vary over time, we scale them for each category by dividing the number of

strengths or concerns for each firm-year by the maximum number of strengths or concerns possible

for that category in that year. This procedure yields strength and concern indices that range

from zero to one for each category-year. Our measure in each category-year is then obtained by

subtracting the concerns index from the strengths index. The net score per category therefore

ranges from →1 to +1. Finally, to obtain the aggregated ESG score of a firm, we combine the net

score for seven qualitative categories, which leads to a final score that ranges from →7 to +7.5

B.6.2 Portfolio Holdings Decomposition of the Main Empirical Example

Taking Jorion’s (1986) rule as an example, Figures B.3a and B.3b show the bottom and top 100

assets with the lowest and highest portfolio weights for the optimal portfolio solved from (32) and

the estimators in (33), respectively, averaged over all years. We decompose the portfolio weights

into components corresponding to the unconstrained MVO portfolio and two constraints, based on

(3) in Proposition 1. In both the top and bottom assets, the full investment constraint (orange)

typically gives positive weights.

For the bottom 100 assets in Figure B.3a, the unconstrained MVO portfolio (blue) generally

leads to negative weights, and the ESG constraint (green) further adds to the negative portfolio

holdings. Overall, these assets tend to have low ESG scores, and are therefore assigned the lowest

weights in the portfolio. In contrast, for the top 100 assets in Figure B.3b, the unconstrained MVO

portfolio (blue) generally gives positive weights and the ESG constraint (green) leads to additional

positive weights.

5We follow Lins, Servaes, and Tamayo (2017) in excluding the six controversial-business categories. Lins, Servaes,

and Tamayo (2017) use only the first five qualitative categories because they consider the other categories irrelevant

for their purposes of corporate social responsibility. However, we choose to include those ratings that correspond to

human rights and product.
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(a) Bottom assets with the lowest weights.

(b) Top assets with the highest weights.

Figure B.3: Average portfolio weights over all years and their decomposition, for the portfolio
defined in (32) with a constraint on the average portfolio characteristic value (ω→xESG ⇑ 1.0) and
Jorion’s (1986) estimates of predictive moments. (a) shows the 100 assets with the lowest weights
and (b) shows the 100 assets with the highest weights. In each subfigure, the top panel shows the
portfolio weights (%) of the constrained portfolio. The bottom panel shows the decomposition of
the weights into components corresponding to the unconstrained MVO portfolio (blue), the full
investment constraint (ω→1 = 1, orange), and the ESG constraint (ω→xESG ⇑ 1.0, green).
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B.6.3 Long-Only ESG Portfolios

Portfolio construction. In this section, we consider investors who construct long-only portfolios

each year by solving the following problem:

max
ω

ω→µ→ ω

2
ω→!ω

s.t. ω→1 = 1

ω→xESG ⇑ b

ω ⇑ 0.

(B.45)

In contrast to (32), we have an additional constraint that all portfolio weights must be non-negative.

We again set b = 1 as an example in our analysis, and use the return forecasts in (33)–(34) to

estimate µ and !. We set ω = 5.

Portfolio holdings decomposition. Taking Jorion’s (1986) portfolio as an example, Figure

B.4 shows the bottom and top 100 assets with the lowest and highest portfolio weights for the

optimal portfolio, averaged over all years, respectively. We decompose the portfolio weights into

components corresponding to the unconstrained MVO portfolio and constraints, respectively, based

on (3) in Proposition 1. For performance attributions of long-only portfolios, we always combine

the full investment constraint and the long-only constraint for simplicity.

In Figure B.4a, the bottom assets have zero weights by design. This is a result of the negative

contribution from the ESG constraint (green) combined with the positive contribution from the

full investment and long-only constraints (orange). In other words, these assets tend to have low

ESG scores, but the long-only constraint forces them to have zero weights instead of negative

weights. However, for the top 100 assets in Figure B.4b, the most significant contribution comes

from the ESG constraint (green). The full investment and long-only constraints (orange) generally

add negative contributions.

Expected return and utility decomposition. Figure B.5 demonstrates the decomposition of

the expected utility and expected return of the long-only portfolio into di#erent components, again

for Jorion’s (1986) portfolio as an example.

The upper panel of Figure B.5a shows that the expected utility of the optimal portfolio is

negative in most years in our sample. This utility is decomposed into three components in the lower

panel using (18) in Proposition 4. The expected utility of the unconstrained MVO portfolio (blue)

is positive over all years. Compared with the portfolio in Figure 5 that allows short positions, the

expected utility contribution of the three constraints (orange), treated as static, is now much more

negative due to the addition of the long-only constraint. Like the portfolio with short positions,

the expected utility contribution from the information contained in the constraints (green) varies

over time. The pattern is again consistent with the pattern of correlations between asset returns

and ESG scores in Figure 4.
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(a) Bottom assets with lowest weights.

(b) Top assets with highest weights.

Figure B.4: Average portfolio weights over all years and their decomposition, for the long-only
portfolio defined in (B.45) with a constraint on the average portfolio characteristic value (ω→xESG ⇑
1.0) and Jorion’s (1986) estimates of predictive moments. (a) shows the 100 assets with the lowest
weights and (b) shows the 100 assets with the highest weights. In each subfigure, the top panel shows
the portfolio weights (%) of the constrained portfolio. The bottom panel shows the decomposition
of the weights into components corresponding to the unconstrained MVO portfolio (blue), the full
investment and long-only constraints combined together (ω→1 = 1 and ω ⇑ 0, orange), and the
ESG constraint (ω→xESG ⇑ 1.0, green).
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Figure B.5b shows the expected return of the optimal portfolio and its decomposition based on

(17) in Proposition 4. The full investment and long-only constraints (orange) contribute negatively

to expected returns. The ESG constraint (green) can contribute either positively or negatively to

the expected returns, but generally on a small scale relative to other components. The expected

return contribution from the information is very significant, which is negative before 2007 and

positive in certain years after 2008. However, the negative contributions from the full investment

and long-only constraints are so strong that the expected return of the constrained portfolio is

lower than that of the unconstrained MVO portfolio in most years.

(a) Expected Utility (b) Expected Return

Figure B.5: Expected return and utility and their decomposition, for the long-only portfolio defined
in (B.45) with a constraint on the average portfolio characteristic value (ω→xESG ⇑ 1.0) and Jorion’s
(1986) estimates of predictive moments. In (a), the top panel shows the expected utility of the
constrained portfolio and the bottom panel shows its decomposition into components corresponding
to the unconstrained MVO portfolio (blue), all constraints treated as static (orange), and the
information from the ESG constraint (green). In (b), the top panel shows the expected return
in excess of the Fama–French five-factor model of the constrained portfolio and the bottom panel
shows its decomposition into components corresponding to the unconstrained MVO portfolio (blue),
the full investment and long-only constraints combined together (orange), the ESG constraint
(ω→xESG ⇑ 1.0) treated as static (green), and the information from the ESG constraint (red).
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Realized return decomposition. Figure B.6 shows the realized returns of the optimal portfolio.

Here we again compare Jorion’s (1986) rule in Figure B.6a with the 1/N rule in Figure B.6b.

(a) Jorion (b) 1/N

Figure B.6: Realized return and their decomposition, for the long-only portfolio defined in (B.45)
with a constraint on the average portfolio characteristic value (ω→xESG ⇑ 1.0). (a) corresponds to
Jorion’s (1986) estimates of predictive moments in (33), and (b) corresponds to predictive moments
consistent with the 1/N rule in (34). In each subfigure, the top panel shows the realized return
in excess of the Fama–French five-factor model of the constrained portfolio, and the bottom panel
shows its decomposition into components corresponding to the unconstrained MVO portfolio (blue),
the full investment and long-only constraints combined together (orange), the ESG constraint
(ω→xESG ⇑ 1.0) treated as static (green), and the information from the ESG constraint (red).

The upper panel of Figure B.6a shows that the realized residual returns of the constrained

portfolio are positive in most years in our sample except for a large drawdown in 2008. The lower

panel decomposes the realized return of the constrained portfolio based on Proposition B.6. The full

investment and long-only constraints (orange) and the ESG constraint (green) can both contribute

to the returns positively or negatively.

In addition, Figure B.6b shows results parallel to those in Figure B.6a, but with the 1/N

rule as the unconstrained MVO portfolio. The realized residual returns, especially those for the

unconstrained portfolio, are more stable over time.

In both cases, the information component contributes negatively to realized returns before

2007, and positively in certain years after 2008. Overall, these components explain the di#erence
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in residual returns between the unconstrained MVO and constrained portfolios.

B.6.4 Excluding Sin Stocks and Energy Stocks

Data. The CRSP data contains several basic firm characteristics, including the industry classifi-

cation of the firm. We complement the CRSP data with the Compustat Historical Segment data,

which also contains industry classification information.

We follow Hong and Kacperczyk (2009) in identifying sin stocks as those that belong to the

alcohol group (SIC codes 2100–2199) and the tobacco group (SIC codes 2080–2085). In addition,

we identify gaming stocks as those with the following NAICS codes: 7132, 71312, 713210, 71329,

713290, 72112, and 721120. We then augment this list by searching across companies at the

company segment level using the Compustat Segments data, identifying a company as a sin stock

if any of its segments has an SIC code in either the alcohol or the tobacco group, or an NAICS

code in the gaming group, as defined above. Accordingly, our final list of sin stocks is the union of

these two screening procedures.

In addition, there is a growing literature on the e#ects of excluding stranded assets such as

energy stocks (Bohn, Goldberg, and Ulucam, 2022). Therefore, we add energy stocks to the list

of assets excluded in portfolio construction, and follow Bohn, Goldberg, and Ulucam (2022) in

identifying energy stocks as those with SIC codes 1000–1519.

Our universe of stocks contains those with valid CRSP returns and industry labels. We also

require a firm to have a market capitalization of at least 100 million USD in a particular year to be

included in the universe for next year. Table B.1 shows, for each year, the number of firms available

in our dataset, the number of excluded firms based on sin stock and energy stock classification at

the end of the last year, and the summary statistics of the annualized residual returns. In general,

we have around 3,000 stocks each year, of which 5.0% to 6.7% firms are excluded each year because

they are labeled as either sin stocks or energy stocks as of the previous year.

We define a binary variable to represent whether an asset can be included in the portfolio:

xi =





0, if stock i belongs to sin stocks or energy stocks

1, otherwise.
(B.46)

Figure B.7 shows the year-over-year cross-sectional correlations between the residual returns

and the inclusion variable (B.46), which tend to be negative before 2010 and positive after 2011.

This implies that sin stocks and energy stocks tend to have higher excess returns relative to the

Fama–French five-factor model compared to other stocks before 2010, which is consistent with

Hong and Kacperczyk’s (2009) results. After 2011, as the attention to SRI increases, sin stocks

and energy stocks tend to deliver lower excess returns.

Portfolio construction. Exclusionary investing usually does not consider short positions, be-

cause otherwise excluded assets can arguably be shorted. Therefore, we consider long-only portfolios
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Table B.1: Summary statistics of the annualized residual returns (in percentage) from the Fama–
French five-factor model and the number of excluded firms based on sin stock and energy stock
classification at the end of the previous year (as a percentage of the total number of firms in the
sample).

Year #Firms Excluded Annualized Residual Return (%)
Firms (%) mean std min 25% 50% 75% max

2001 2,326 5.5 12.9 57.7 →93.1 →15.5 3.7 26.1 957.5
2002 2,498 5.0 2.8 39.0 →92.3 →17.2 3.6 18.6 545.7
2003 2,519 5.4 9.4 36.6 →77.3 →10.4 3.7 19.4 469.3
2004 3,064 5.5 6.0 35.7 74.2 →11.3 3.0 16.3 811.1
2005 3,367 5.9 3.7 31.5 →93.2 →13.6 →0.1 15.9 288.1
2006 3,597 6.2 6.4 30.4 →77.0 →9.9 3.3 16.9 318.1
2007 3,910 6.5 7.0 44.2 →90.9 →16.5 0.0 21.2 511.0
2008 4,089 6.6 →12.6 44.9 →98.7 →39.9 18.1 7.0 647.1
2009 3,473 6.6 14.7 49.9 →95.9 →14.1 7.3 34.1 531.8
2010 3,856 6.7 4.6 29.6 →90.4 →11.0 2.4 16.4 332.2
2011 4,065 6.7 →0.1 30.1 →97.8 →16.4 1.3 15.7 309.6
2012 3,852 6.7 2.4 26.9 →97.3 →10.5 1.8 13.1 407.6
2013 3,831 6.7 0.4 31.3 →96.0 →15.5 →2.0 11.2 456.9
2014 3,900 6.1 0.3 26.8 →94.8 →12.5 1.0 13.4 295.5
2015 3,769 5.7 →1.1 28.4 →96.3 →15.4 0.9 13.4 194.9
2016 3,520 5.4 2.2 27.9 →97.1 →10.3 0.6 12.6 268.1
2017 3,451 5.8 4.4 27.9 →100.0 7.5 4.4 14.5 312.7
2018 3,346 6.1 →2.7 25.8 →100.0 →14.0 →3.0 9.1 199.5
2019 3,124 5.6 6.6 26.8 →95.2 →5.6 7.4 17.9 259.8
2020 3,078 5.3 4.3 47.6 →98.4 →15.4 1.6 16.4 1,432.2

Figure B.7: Cross-sectional correlations between asset returns and the inclusion variable defined in
(B.46) each year.
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by solving the following problem each year.

max
ω

ω→µ→ ω

2
ω→!ω

s.t. ω→1 = 1

⇁i = 0 if xi = 0

ω ⇑ 0.

(B.47)

We again use the return estimates in (33) and (34) to derive the predictive moments for µ and !.

We set ω = 5.

Expected return and utility decomposition. For Jorion’s (1986) rule, Figure B.8 shows the

decomposition of the expected utility and expected return of the portfolio into di#erent components.

The upper panel of Figure B.8a shows that the expected utility of the optimal portfolio is posi-

tive through our 20-year sample except in 2009. This utility is decomposed into three components

in the lower panel using (18) in Proposition 4 and its predictive return version in Appendix B.2.2.

The expected utility of the unconstrained MVO portfolio (blue) is always positive, while the ex-

pected utility contribution of the three constraints (orange), treated as static, is always negative.

The expected utility contribution from information contained in the constraints (green), however,

varies over time. The magnitude of contribution from information is generally smaller in this case

compared to the ESG constraints in Section 5.2 because the impact from exclusionary investing

of sin stocks and stranded assets in our example is smaller due to the low percentage of excluded

firms (see Table B.1).

Figure B.8b shows the expected return of the optimal portfolio and its decomposition based on

(17) in Proposition 4 and its predictive return version in Appendix B.2.2. The two constraints (or-

ange and green) contribute negatively to expected returns. The expected return contribution from

information (red) is positive in certain years. Together, the expected return of the constrained port-

folio is lower than that of the unconstrained MVO portfolio primarily driven by the full investment

and long-only constraints.

Realized return decomposition. Finally, we show the realized returns of the optimal portfolio

in Figure B.9, in which we compare two cases where the unconstrained MVO portfolio is Jorion’s

(1986) rule (Figure B.9a) and the 1/N rule (Figure B.9b).

The upper panel of Figure B.9a shows the realized residual returns for the constrained portfolio,

which are decomposed into several components based on Proposition B.6 in Appendix B.4 in the

lower panel. The contribution from the full investment and the long-only constraints (orange) is

generally negative except for 2008, 2009, and 2019. The exclusionary investment constraint (green),

treated as static, also contributes either positively or negatively over the 20-year period.

In addition, Figure B.9b shows results parallel to those in Figure B.9a, but with the 1/N rule

as the unconstrained MVO portfolio. As expected, the impact from the full investment and the
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(a) Expected Utility (b) Expected Return

Figure B.8: Expected return and utility and their decomposition, for the long-only portfolio defined
in (B.47) with an exclusionary constraint based on the inclusion variable defined in (B.46) and Jo-
rion’s (1986) estimates of predictive moments. In (a), the top panel shows the expected utility of
the constrained portfolio, and the bottom panel shows its decomposition into components corre-
sponding to the unconstrained MVO portfolio (blue), all constraints treated as static (orange), and
the information from the exclusionary constraint (green). In (b), the top panel shows the expected
return in excess of the Fama–French five-factor model of the constrained portfolio, and the bottom
panel shows its decomposition into components corresponding to the unconstrained MVO portfolio
(blue), the full investment and long-only constraints combined together (orange), the exclusionary
constraint treated as static (green), and the information from the exclusionary constraint (red).
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long-only constraints (orange) is much smaller. The contribution from information is positive in

2001, 2008, and in most years after 2011. However, the magnitude is insu”cient to compensate for

the large drawdown in 2008.

(a) Jorion’s (1986) rule (b) 1/N rule

Figure B.9: Realized return for the long-only portfolio defined in (B.47) with an exclusionary
constraint based on the inclusion variable defined in (B.46). (a) corresponds to Jorion’s (1986)
estimates of predictive moments in (33), and (b) corresponds to predictive moments consistent
with the 1/N rule in (34). In each subfigure, the top panel shows the realized return in excess
of the Fama–French five-factor model of the constrained portfolio and the bottom panel shows
its decomposition into components corresponding to the unconstrained MVO portfolio (blue), the
full investment and long-only constraints combined together (orange), the exclusionary constraint
treated as static (green), and information from the exclusionary constraint (red).
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Pástor, L., and R. F. Stambaugh, 2000, Comparing asset pricing models: an investment perspective,
Journal of Financial Economics 56, 335–381.

Stambaugh, R. F., 1997, Analyzing investments whose histories di#er in length, Journal of Financial
Economics 45, 285–331.

Tu, J., and G. Zhou, 2010, Incorporating economic objectives into bayesian priors: Portfolio choice
under parameter uncertainty, Journal of Financial and Quantitative Analysis 45, 959–986.

Tu, J., and G. Zhou, 2011, Markowitz meets talmud: A combination of sophisticated and naive
diversification strategies, Journal of Financial Economics 99, 204–215.

Zellner, A., 1971, An Introduction to Bayesian Inference in Econometrics (John Wiley & Sons,
New York).

Zellner, A., and V. K. Chetty, 1965, Prediction and decision problems in regression models from
the bayesian point of view, Journal of the American Statistical Association 60, 608–616.

Zhou, G., 2009, Beyond black–litterman: Letting the data speak, The Journal of Portfolio Man-
agement 36, 36–45.

41


	Introduction
	A Framework for Constraint Attribution
	Constraints with Information
	Attribution with Information
	Decomposing Information with Specific Distributions

	Accounting for Estimation Risk via Bayesian Portfolio Analysis
	Bayesian Portfolio Analysis
	Attribution with Information Using Predictive Distribution
	Interpreting Constraints as Bayesian Priors
	Summary

	Common Examples of Portfolio Constraints
	Factor Exposure
	Exclusionary Investing
	Selection of Constraints

	Empirical Analysis
	Data
	Descriptive Statistics
	Performance Attribution
	Other Portfolios and Selection of Constraints

	Conclusion
	Online Appendix
	Proofs of Main Propositions
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7

	Additional Technical Results
	General Dependence between Returns and Characteristics
	Additional Results for Attribution Using Bayesian Portfolio Analysis
	Unconditional Attribution
	Ex-Post Return Attribution
	Additional Simulation Results
	Additional Results for Empirical Analysis


