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a b s t r a c t 

Crowd scene analysis, and in particular its density estimation, is a challenging task due to the lack of 

spatial information, scale variation, and the large amount of supervised-learning parameters. In order to 

address these challenges, we propose a Scale-Recursive encoder–decoder Network with Point Supervi- 

sion (SRN + PS). On the one hand, an encoder–decoder recurrent structure uses features between adjacent 

scales to tackle scale variation, and a novel loss function, called the row vector-based counting loss, is 

proposed to focus on the crowd counting accuracy. On the other hand, we employ an additional point 

segmentation task in training and combine features learned from the two tasks above. The Euclidean loss, 

row vector-based counting loss, and two-label focal loss are integrated by a joint training scheme, which 

improves both the quality of density map estimation and the performance of crowd counting. Finally, we 

propose a weakly supervised framework based on the SRN structure and the Convolutional Winner-Take- 

All(CWTA) module. In this framework, most parameters are obtained by unsupervised learning with the 

exception of a few which are tuned by supervised learning in model training. As a result, our multi-scale 

structure can obtain salient object sparse spatial features from unsupervised learning. Experiments on 

the ShanghaiTech, UCF _ CC _ 50 and UCSD datasets demonstrate the effectiveness of our proposed method. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Image analysis in crowd scene, including object counting and

density map estimation, is an important task in computer vision

due to the ever-increasing demand in applications such as traffic

congestion detection, product congestion during delivery, and

moving objects monitoring. Recently, the literature on crowd scene

analysis aims to tackle two main tasks: crowd counting and den-

sity estimation. However, high-quality crowd density map (crowd

count) prediction is still difficult to achieve due to the complex

background and targets with inhomogeneous sizes. Although many

state-of-the-art methods [1,2] are used to learn the mapping be-

tween pixel level features and density maps (crowd counts), these

methods are only based on density supervision and do not fully

utilize the semantic segmentation information such as the labeled

category of the pixels. A few studies focus on the collaborative

learning between the regression model and the segmentation

model, and typically thousands of annotations are required be-
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ause they are based on supervised learning. Therefore, it remains

nclear how to efficiently learn the features of unlabeled crowd

cene. 

Given the above problems, we need to overcome the follow-

ng challenges: (1) it is difficult to obtain crowd segmentation

ccurately in most crowd scenes. However, pixel-level features

an provide spatial location of predicted crowd objects. Therefore

e need to make full use of the segmented feature information

o achieve lower estimation errors. (2) The inhomogeneous and

xtreme-overlapping nature of object instances, high levels of

lutter in crowd scene, and scale variation are common problems

n images, with the scale variation being the major obstacle.

lthough a few network architectures [2–4] are proposed for

his problem, the features between adjacent scales are not cor-

elated and applied for crowd density estimation. (3) Crowd

ounting requires large datasets with pixel-level annotation for

raining (see Fig. 1 (a)). In any crowd analysis dataset, each image

ontains thousands of congestion targets, making the annota-

ion of crowded objects extremely difficult. (4) Recent methods

2,5,6] generate density maps that are inconsistent with the

ize of the input images. The resizing operation of the density

ap prediction leads to blurred spatial locations of the detected

https://doi.org/10.1016/j.neucom.2019.12.070
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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Fig. 1. Typical dense crowd images with human annotations (from UCF _ CC _ 50 

dataset). 
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bjects, leading to higher count error rate and lower quality

ensity maps. 

To tackle these challenges, we propose a collaborative learn-

ng framework to leverage the diversity of features and unlabeled

ata for crowd counting. An encoder–decoder recurrent structure,

hich includes one encoder and two decoders, is employed to ex-

ract high-scale density information and low-scale features to ad-

ress the scale variations. The structure takes a sequence of images

ith crowd scenes as the input of the encoder at different scales.

ne of the decoders up-samples the features learned by the en-

oder to complete the density estimation, and the other decoder

egments the foreground points in feature map by point super-

ised learning. The point supervised module is similar to the at-

ention guided detection module [7] , which are both used to detect

he location of each person. The above objectives are integrated via

 collaborative learning strategy. In order to address the third chal-

enge above, we add three convolutional winner-take-all modules

8] between the down-sampling and up-sampling paths, inspired 

y the GWTA method [9] . This helps convergence in model train-

ng with unlabeled data. 

Our multi-scale collaborative learning architecture has following

dvantages compared to the existing literature: 

1. Our CNN model is trained by collaborative learning with two

different com puter vision tasks, namely the density estimation

and the point segmentation, as shown in Fig. 1 . These two re-

lated tasks effectively assist and regulate each other to obtain

high-quality density map estimations. 

2. A novel l 2 loss function that counts the row vector sums of

the density map is proposed to generate more accurate count-

ing results. The fine-tuned model based on a weighted sum of

multiple loss functions can overcome the gap between accurate

crowd counting and high-quality density map estimations. 

3. The CWTA based module used in our encoder–decoder struc-

ture provides more information for unlabeled data training.

This contributes to the growing literature on weakly supervised

learning of crowd scene analysis. 

. Related work 

CNN-based methods have achieved great success in numerous

omputer vision tasks such as semantic segmentation and object

etection, which inspired many researchers to train models for

orresponding density maps and crowd count. Sindagi and Patel

10] summarize CNN-based methods into four categories based

n their network properties. Among them, the multi-task learn-

ng framework [11,12] has been most widely used in crowd anal-

sis task recently. The recent literature on crowd scene anal-

sis can be classified into two categories: detection-based (or

egmentation-based) approaches and density estimation-based ap-

roaches. The former either adopts a moving-window architecture

o detect crowded people or uses the processed semantic labels to

egment the density regions, and the latter estimates density maps

hat represent the crowd counts by the sum of pixel values. 

Detection-based (or segmentation-based) approaches. In addition

o crowd counting in crowd scene analysis tasks, Kang et al.
12] use classification and regression methods to generate full-

esolution density maps on detection and tracking tasks. A sliding

indow regressor predicts the density for every pixel, which im-

roves detection and tracking performances. In another study [13] ,

ll congested object instances are viewed as a set of sequences,

nd an LSTM controller decodes the GoogleNet-encoded features

nto a set of detections. However, they are only used to count a

lass of objects. The GMN [14] formulates counting as a match-

ng problem, and labeled video data is used to train for tracking,

hich can classify multiple instances of objects in an image. In

ddition, in order to obtain the spatial features of congested ob-

ects, Kang and Wang [15] utilize a fast Fully Convolutional Neu-

al Network (FCNN) for crowd segmentation. Although the FCNN

nly predicts the rough area of congestion, it provides new ideas

or crowd scene analysis with additional features such as context

nd category except crowd counting. Instance regions [16] are used

o locate the object in order to count accurately, and this method

s similar to image semantic segmentation, which uses points to

epresent different object instances and divides them into different

ized regions. However, it does not perform well in object count-

ng with high density and mutual occlusion. Furthermore, recent

tudies [17,18] try to learn more useful CNN features that are ro-

ation invariant, which is an important component in object de-

ection methods. We will also consider rotation invariance in our

uture study of crowd analysis. 

Density estimation-based approaches. CNN-based crowd count- 

ng and density estimation methods are widely used in crowd

cene analysis. Onoro-Rubio and López-Sastre [1] propose a scale-

ware counting model, the Hydra CNN, for object density esti-

ation. Similar ideas are applied to a multi-column-based archi-

ecture (MCNN) [2] which further improves the prediction per-

ormance. In addition to the research on network structure im-

rovements, Huang et al. [19] take advantage of the effective vari-

nts of pooling modules, which are called multi-kernel pooling and

tacked pooling, to gain high scale invariance. Sam et al. [20] train

 CNN-based model with a combination of regression neural net-

orks, and a switch classifier is used to select the best CNN re-

ressor. These models belong to the same category of scale-aware

odels that are robust to variations in scale. Another set of meth-

ds [6,21] integrate contextual information into the CNN frame-

ork, which can deal with the problem of complex backgrounds by

earning local counts. Recently, inspired by the multi-task learning

or crowd counting problems [22] , various methods have expanded

rom two related learning objectives, the crowd density and crowd

ount, to other learning tasks such as attention maps [23] , crowd

elocity maps [24] , and density level classification tasks [6] . Finally,

erformance can also be improved by utilizing new loss functions

uch as the adversarial loss [4] and the perceptual loss [4] . 

Weakly supervised learning. Most crowd counting tasks require

abeled data, but little work has been done in weakly supervised

earning for crowd counting. There is a growing body of research

n this direction. A standard autoencoder [25] structure only con-

ists of encoder and decoder, but the coding distribution of the en-

oder output is not processed by other modules. To tack this prob-

em, Makhzani et al. [26] impose a prior distribution on the latent

epresentation to reduce the reconstruction error. However, the ar-

hitecture that combines GAN and autoencoder is complex, which

ay not be ideal for data with unbalanced positive and negative

amples. The convolutional WTA autoencoders [8] use spatial and

ifetime sparsity constraints to optimize the data distribution of the

ncoder, which can finally obtain more accurate data features. 

. The proposed method 

The overall framework of the proposed model, which we

all the Scale-Recursive encoder–decoder Network with Point
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Fig. 2. The architecture of Scale-Recursive encoder–decoder Network with Point Supervision. The red arrow is defined as the training path of the point feature map, and the 

black arrow is defined as the training path of the density map. The weighted calculation process of each loss function is shown on the right-hand side. 

Fig. 3. The framework of proposed encoder–decoder network. 
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Supervision (SRN + PS), is illustrated in Fig. 2 . In the dashed box, the

Scale-Recursive structure is adopted across three different scales

in the coarse-to-fine strategy, which is only used for performance

optimization; each encoder/decoder module (in Fig. 3 ) takes a se-

quence of images generated by the previous module as inputs, and

a set of corresponding density maps and point maps are produced

at different scales. Then element-wise multiplication is applied on

the density map and point feature map to generate a refined den-

sity feature map. Finally, we weight the loss functions at different

scales, and the last scale encoder/decoder module will generate the

high-quality density map. 

3.1. Encoder–decoder network 

In Fig. 3 , we use three groups of convolutional layers in the en-

coder and decoder, respectively. Between the encoder and decoder

module, LSTM is added to capture useful information and complete

cross-scale recovery. Due to the visual similarity of the regions of

different scales in the crowd analysis context, we need effective

variants of the pooling module. Instead of the single max pooling,

we use the stacked pooling with a set of kernels {2, 2, 3} [19] to

improve the scale invariance of convolutional layers, which con-

tains pooling kernels with different receptive fields to capture the

features at multi-scale convolutional layers. Therefore its feature
aps are computed as 

tack (s ) = 

1 

3 

3 ∑ 

i =1 

P ool(k i , s i ) (1)

here Stack ( s ) is the stack pooling layer with stride s and s = 2 .

ool ( k i , s i ) is the max pooling layer with kernels k i and strides

 i . Here k 1 = k 2 = 2 , k 3 = 3 and s 1 = 2 , s 2 = s 3 = 1 . The bottom of

ig. 3 shows the specific structure of stack pooling. 

We use Conv ( o, k ) to denote the traditional convolution layer

ith o outputs and kernel size k , and Deconv ( o, k, s ) to denote the

e-convolution layer with o outputs, kernel size k , and stride s .

he parameters can be represented as: 3 × Con v (32 , 5) − Stack (2)

3 × Con v (64 , 5) − Stack (2) − 3 × Con v (128 , 5) − Stack (2) 

LST M − 3 × Con v (128 , 5) − Decon v (128 , 4 , 2) − 3 × Con v (64 , 5) 

Decon v (64 , 4 , 2) − 3 × Con v (32 , 5) − Decon v (32 , 4 , 2) −
on v (3 , 3) . We also use skip-connections between the corre-

ponding encoder and decoder to combine different levels of

nformation (see dash parts in Fig. 3 ). 

.2. Scale-Recursive Network with point supervision 

In contrast to MCNN [2] , we adopt a new recursive structure

cross three scales in coarse-to-fine strategy. We form the genera-

ion of a density map at each scale as a sub-problem of our crowd
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Fig. 4. The single scale architecture of the proposed CNN based on weakly supervised learning. 
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cene analysis task, which takes an image with crowd information

nd a predicted result (upsampled from previous scale) as input,

nd estimate the density map at this scale as 

 

i +1 , H 

i +1 = N SRN (I i +1 , D 

i , H 

i ; θSRN ) (2)

here i is the scale index, with i = 3 representing the final and

nest scale. I i and D 

i are the input images and estimated den-

ity maps at the i th scale respectively. N SRN is the proposed Scale-

ecursive network with training parameters expressed as θ SRN . The

idden state H i +1 can be transmitted between adjacent scales, and

e used to obtain the initial density map and features from pre-

ious coarse scale ( i th scale). These estimated maps in different

cales follow a recurrent relationship, which is sharing network

eights to reduce the number of trainable parameters and train-

ng difficulty. In addition, they can capture and fuse useful feature

nformation across scales. 

Eq. (2) gives the general definition of the network. We describe

he details here because several changes are needed to apply this

ncoder–decoder networks to our framework. Firstly, we insert the

STM module between the encoder and decoder to improve the

verall performance. Because ConvLSTM [27] performs better in

ur experiments, it is chosen as the core module of this part. Sec-

ndly, our Scale-Recursive network requires point map mask (see

ig. 1 (b)) supervision to obtain the crowd segmentation informa-

ion. Similar to the architecture of density regression, we use the

ame encoder and another decoder with the same structure. In the

abels of the point map, the value of each background pixel is set

o 0, while the value of each object class is set to 1. The modified

etwork with Point Supervision is expressed as 

F i +1 = N E (I i +1 , D 

i ; θE ) 

H 

i +1 , L i +1 = Con v LST M(H 

i , F i +1 ; θLST M 

) 

D 

i +1 
1 

= N 1 D (L i +1 , G 

i +1 
D 

; θ1 D ) 

S i +1 = N 2 D (L i +1 , G 

i +1 
S 

; θ2 D ) 

D 

i +1 = Con v (D 

i +1 
1 

× S i +1 ) 

(3) 

here N E is the encoder CNNs with parameters θE , N 1 D is the de-

oder CNNs of density map estimation path with parameters θ1 D ,

nd N 2 D is the decoder CNNs of point map prediction path with

arameters θ2 D . The final density map D 

i +1 is the convolution of

he point map S i +1 multiplied by the density map D 

i +1 
1 

. G D is de-

ned as the ground truth of density map, and G S is defined as the

round truth of point map. Three encoders and decoders at differ-

nt scales are used in N E and N D , respectively. The hidden feature

 

i contains useful density information after the ConvLSTM process-

ng, which is passed to the next scale H 

i +1 . In our experiment, the

 th scale is set to half the size of the (i + 1) th scale. 
.3. Scale-Recursive Network based on weakly supervised learning 

To explore the application of weakly supervised learning in

rowd scene analysis, we still use our proposed Scale-Recursive

etwork and train almost all parameters with unlabeled data, fol-

owed by supervised training of the retaining parameters. The re-

aining layers are trained with an unsupervised method called the

onvolutional Winner-Take-All (CWTA) [8] . Because most parame-

ers are obtained by the unsupervised learning approach, we call it

he Scale-Recursive Network based on weakly supervised learning. 

Fig. 4 shows the proposed single scale architecture for our CNN

ased on weakly supervised learning, and the other two scales

re based on Fig. 4 and connected together according to Fig. 2 .

ompared with the encoder–decoder structure in Fig. 3 , the CWTA

odule is added between three up-sampling and down-sampling

aths respectively. This helps our model with more efficient train-

ng, and achieves feature sparsity including both spatial and life-

ime sparsity, which is better for highly diverse crowd data. The

ncoder–decoder path of Fig. 3 is used for unsupervised training,

nd only the last 3 convolutional layers of the decoder on the last

cale are trained with less labeled data to tune the parameters and

utput density feature map. 

CWTA Module . Following the method in Makhzani and Frey [8] ,

e replace its auto-encoder with our encoder–decoder network

ith skip-connection. The CWTA module is trained under two

inner-take-all sparsity constraints: spatial sparsity and lifetime

parsity. To regularize the encoder–decoder network effectively,

patial sparsity only chooses the largest hidden activity within

ach feature map to generates a sparse representation. However, it

s time-consuming in the reconstruction of each image. In order to

urther increase the sparsity, the winner-take-all lifetime sparsity

s exploited to avoid the dead filter problem that often occurs in

parse coding, which forces every filter to be updated upon visiting

very mini-batch. Through these two constraints, the CWTA mod-

le can be used for learning hierarchical sparse representations in

his weakly supervised learning task. 

.4. Loss function 

Full supervision. In the density map estimation path of Fig. 2 ,

e first adopt the Euclidean loss l d for each scale to measure the

istance between the predicted density map and the ground truth,

hich is the sum of l id loss at each scale, 

 d = 

n ∑ 

i =1 

l id = 

n ∑ 

i =1 

λid 

M i 

|| D 

i − G 

i 
D || 2 2 (4)



318 Z. Dong, R. Zhang and X. Shao et al. / Neurocomputing 384 (2020) 314–324 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

p  

U  

r  

b  

a  

(

 

w  

p  

o  

t

 

r  

l  

i

 

w  

i  

r

4

 

r  

d  

m  

q  

d  

s  

G  

e  

d  

f  

o  

m  

e  

d  

o  

o

 

b  

k  

g  

t  

i  

t  

σ  

v

G  

w  
where D 

i and G 

i 
D 

are the prediction of our network and ground

truth of the density map respectively in the i th scale. λid is the

weight for each scale, which we set to 1 after several experimen-

tation. M i is the total number of pixels in D 

i , and n is defined as

the number of scales. In Fig. 2 , our SRN contains 3 scales, so n is

set to 3. 

In addition to the density map regression by L 2 -norm, we notice

that regression of the crowd count greatly improves the perfor-

mance of estimated performance, which is likely because the con-

gestion levels of images are different. For example, in the sparse

scenario, the head count is usually not very large. Row vector-

based counting loss can solve the imbalance of sparse and dense

degree in crowd scene, where the density map D 

i is defined as

a set of row vectors: D 

i = [ D r1 , D r2 , . . . , D rn ] 
T . Therefore, this loss

function can be expressed as 

l c = 

n ∑ 

i =1 

l ic = 

n ∑ 

i =1 

λic 

M i 

|| sum (D 

i , 1) − sum (G 

i 
D , 1) 

sum (G 

i 
D 
, 1) + 1 

|| 2 2 (5)

where sum ( D 

i , 1) and sum (G 

i 
D 
, 1) are the estimated and ground

truth human count by summing the density map by row. The

weight λic is set to 1 in the same way as Eq. (4) . One is added

to the denominator to avoid division by zero. 

In addition to the above loss function of the density map path

in our proposed network, we introduce another point map loss

function in the point map path training process. The point map

loss function is a two-label focal loss [28] , defined as 

l f = 

n ∑ 

i =1 

l i f = 

n ∑ 

i =1 

λi f 

M i 

F L i 

F L i = −α(G 

i 
s − P i ) γ log (P i ) − (1 − α)(P i ) γ log (1 − P i ) 

P i = sigmoid(S i ) 

(6)

where G s is the point map ground truth, and P i is the probability

of each pixel in predicted point map activated by sigmoid function.

As suggested by previous research [28] , we set α = 0 . 25 and γ = 2

to balance the distribution of positive and negative categories re-

spectively. 

Following the method in Shen et al. [4] , we also add the per-

ceptive loss function [29] l p to minimize the perceptual differences

between the predicted density map and ground truth. The Scale-

Recursive Network with point supervision is trained using the fol-

lowing final loss function 

l f inal = l d + β1 l c + β2 l f + β3 l p (7)

where β1 , β2 , and β3 are weighting parameters that are all set

to 0.1 in the experiments. We also include an experiment in

Section 4.6 to analyze the sensitivity of these three parameters. We

use this multi-task combined loss function to do joint training in

fully supervised learning. 

Weak supervision. In the unsupervised training part, Q 

i 
w 

denotes

the output of the encoder–decoder network (see Fig. 4) at the i th

scale, and Q 

′ i +1 
w 

is the corresponding decoder reconstruction at the

(i + 1) th scale. Therefore the loss function is given by 

l w 

= 

n ∑ 

i =1 

1 

M i 

|| Q 

i 
w 

− Q 

′ i +1 
w 

|| 2 2 . (8)

In the supervised training stage, the supervised layers (see the

dotted box at the bottom of Fig. 4) are trained to minimize the re-

gression loss between the predicted and ground truth density map.

Here the regression loss function is defined as 

l D w 

= 

n ∑ 

i =1 

1 

M i 

|| D 

i 
w 

− G 

i 
w 

|| 2 2 (9)

where D 

i 
w 

and G 

i 
w 

stand for the estimated density map and the

corresponding ground truth density map at the i th scale. 
. Experiments 

In this section, we perform experimental verification and com-

are results on three challenging public datasets: ShanghaiTech [2] ,

CF _ CC _ 50 [30] and UCSD [31] . In training, we set the learning

ate to be 1 e − 5 , bach size to be 4, and the training epoches to

e 140 0, 20 0, and 20 on the three datasets, respectively. We evalu-

te the performance by two common metrics: mean absolute error

MAE) and mean square error (MSE), which are defined as: 

MAE = 

1 

N 

N ∑ 

i =1 

| sum (D i ) − sum (G i ) | 

MSE = 

√ 

1 

N 

N ∑ 

i =1 

| sum (D i ) − sum (G i ) | 2 
(10)

here N is the number of images in test set, D i and G i are the

redicted and ground-truth density map respectively, and the sum

f these two matrices is the total count of prediction and ground

ruth. 

Following Sindagi and Patel [21] , we also use two standard met-

ics, PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Simi-

arity in Image), to evaluate the quality of the density map of each

mage. They are defined as: 

P SNR = 10 log 10 

(
(2 n −1) 2 

MSE 

)
SSIM(D i , G i ) = l(D i , G i ) × c(D i , G i ) × s (D i , G i ) 

(11)

here n is the number of bits per pixel, and l (.), c (.), and s (.) are

mage similarity measures from brightness, contrast, and structure

espectively. 

.1. Density map for training 

Both training and testing require crowd images and their cor-

esponding ground-truth density maps. However, almost all crowd

atasets only contain the coordinates of points that represent hu-

ans, so the conversion from point sets to density maps is re-

uired. Following the same scheme in Shen et al. [4] , we use the

istance matrix to determine the head radiuses. To deal with head

ize variations and perspective distortions, we utilize the adaptive

aussian kernels instead of the traditional Gaussian kernels to gen-

rate robust density maps. Fig. 5 shows two density maps by tra-

itional Gaussian kernels and adaptive Gaussian kernels generated

rom the ShanghaiTech Part A dataset. The color bar at the top

f the figure represents the distribution of values in the density

aps, with values decreasing from left to right. The red boxes in

ach plot show the quality of density maps generated by the two

ifferent methods. In density crowd scenes, crowd density maps

btained by convolving adaptive Gaussian kernels have higher res-

lution and better distinguishes different crowd heads. 

The variance σ i is used to describe the shape of the distri-

ution, which is related to the distance between the object and

 neighbors generated by the Kd-Tree. Larger values of σ i imply

reater fluctuations in the data, and these nodes do not belong to

he same category space, so the Kd-Tree needs to be partitioned

n this node. Here we only calculate the average distance d i be-

ween four neighbor nodes and the target object, and the variance

i is defined as 0.3 d i . The generated density map is a convolutional

alue, which is calculated as 

 (x ) = 

N ∑ 

i =1 

δ(x − x i ) ∗ GA σi 
(x ) (12)

here x is the object location, δ(x − x ) is equivalent to an impulse
i i 
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Fig. 5. Representative density maps from the ShanghaiTech Part _ A dataset. 
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Table 1 

Estimation results on the ShanghaiTech dataset. 

Dataset Part _ A Part _ B 

Methods MAE MSE MAE MSE 

Cross-scene [22] 181.8 277.7 32.0 49.8 

MCNN [2] 110.2 173.2 26.4 41.3 

Cascades-MTL [32] 101.3 152.4 20.0 31.1 

Switching-CNN [20] 90.4 135.0 21.6 33.4 

ACSCP [4] 75.7 102.7 17.2 27.4 

SRN + PS (ours) 75.0 115.2 13.8 18.8 

CP-CNN [21] 73.6 106.4 20.1 30.1 

Table 2 

Estimation results of crowd count on the UCF _ CC _ 50 dataset. 

Methods MAE MSE 

Cross-scene [22] 467.0 498.5 

MCNN [2] 377.6 509.1 

Hydra-2s [1] 333.7 425.7 

Hydra-3s [1] 465.7 371.8 

Cascades-MTL [32] 322.8 397.9 

Switching-CNN [20] 318.1 439.2 

CP-CNN [21] 295.8 320.9 

ACSCP [4] 291.0 404.6 

SRN + PS (ours) 289.7 384.2 
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unction, and GA (.) is the Gaussian function. However, the adaptive

aussian kernel method is only applicable to dense crowd scene

nalysis. In contrast, the fixed Gaussian kernel approach is applied

o the opposites of density estimations due to the wide distance

etween objects. 

.2. Datasets 

ShanghaiTech [2] is divided into two parts: Part _ A and Part _ B. It

ontains a total of 1198 labeled images in different crowd scenes,

nd the crowd images in Part _ B are sparser than those in Part _ A.

e use 300 images for training and 182 images for testing for

art _ A; 400 images for training and 316 images for testing for

art _ B. Because our encoder–decoder structure requires the input

mages and output density maps to have a fixed size, we resize all

mages and ground truth including density maps and point maps

o 720 × 720. To augment the training data, 240 × 240 patches

re randomly cropped and folded from different locations. In the

esting stage, we merge some 240 × 240 patches into 720 × 720

mages that represent the predicted density map. 

UCF _ CC _ 50 [30] is a typical dense crowd counting dataset,

hich only has 50 annotated crowd images with different levels

f congestion. Following Idrees et al. [30] , we use 5-fold cross-

alidation. For each validation, forty images are used as train-

ng samples and the remaining ten as the validation set. To aug-

ent the training data, each image is randomly cropped to nine

76 × 176 patches, which generates a total of 360 patches in one

old of the training data. In the testing stage, to evaluate each im-

ge fairly, the nine cropped patches are combined to calculate the

nal evaluation metrics. 

UCSD [31] contains 20 0 0 labeled frames of size 158 × 238.

ompared to UCF _ CC _ 50, it is a sparse crowd counting dataset

ith the largest count of 46. The provided ROI for each video

rame helps reduce distractions from the complex background, and

he pixels outside of ROIs are set to zero. Following past literature

2,31] , frames from 601 to 1400 are used as training data, and the

ther 1200 frames are used as testing data. We set the variance

i of the gaussian kernel to a fixed value 4.0, and the same data

ugmentation approach as the ShanghaiTech dataset is adopted to

revent overfitting. 
.3. Comparisons with state-of-the-art methods 

In order to evaluate the performance of our approach, we com-

are it with the previous state-of-the-art methods in three differ-

nt public datasets. The results of our method trained in fully su-

ervised fashion are shown in Tables 1 –3 . 

ShanghaiTech-A and UCF _ CC _ 50 are dense crowd datasets. As

hown in Tables 1 and 2 , SRN + PS performs better than most of

he state-of-the-art methods on ShanghaiTech-A. The cross-scene

ethod [22] gives the direction of density estimation: estimating

he counts of crowd people by density map. Based on Zhang

t al. [22] , the MCNN method [2] achieves robust and better

erformance through multi-column structures. The Cascades- 

TL [32] jointly learns the crowd count classification and the

ensity map, achieving performance improvements without us-

ng multi-column networks. However, the category information
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Table 3 

Estimation results of crowd count on the UCSD dataset. 

Methods MAE MSE 

FCN-MT [33] 1.67 3.41 

Cross-scene [22] 1.60 3.31 

Switching-CNN [20] 1.62 2.10 

FCN-rLSTM [34] 1.54 3.02 

CCNN [1] 1.51 –

SRN + PS (ours) 1.24 1.63 

MCNN [2] 1.07 1.35 

Table 4 

Estimation results of crowd count based on weakly supervised learning on the 

ShanghaiTech Part _ A dataset. 

Dataset Methods MAE MSE 

Part _ A CCNN supervised [9] 124.6 186.9 

Autoencoder [9] 162.1 233.3 

GWTA-CCNN [9] 154.7 229.4 

SRN + CWTA(Ours) 158.7 223.3 

UCF _ CC _ 50 CCNN supervised [9] 367.2 551.3 

Autoencoder [9] 1272.8 1166.2 

GWTA-CCNN [9] 433.7 583.3 

SRN + CWTA (ours) 364.2 459.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

The quality of density maps on the ShanghaiTech Part _ A dataset. 

Methods PSNR SSIM 

MCNN [2] 20.91 0.52 

CP-CNN [21] 21.72 0.72 

SRN + PS (ours) 22.74 0.78 

Table 6 

The quality of density maps generated by SRN + PS in all three datasets. 

Dataset PSNR SSIM 

ShanghaiTech Part _ A [2] 22.24 0.78 

ShanghaiTech Part _ B [2] 24.17 0.83 

UCF _ CC _ 50 [30] 13.61 0.25 

USCD [31] 17.82 0.80 

Table 7 

A comparison of the numbers of parameters (in millions) for each method. 

Methods Cross-scene [22] MCNN [2] Switching-CNN [20] 

Parameters 22.5 0.13 15.1 

Methods CP-CNN [21] ACSCP [4] SRN + PS 

Parameters 68.4 5.1 13.2 

Table 8 

The ablation experiment of our method on the ShanghaiTech Part _ A 

dataset. 

Methods MAE MSE 

SRN( l d ) 129.6 179.5 

SRN + PS( l d ) 100.2 154.3 

SRN + PS( l d , l c ) 83.3 136.4 

SRN + PS( l d , l c , l p ) 75.0 115.2 

SRN with single pooling 134.2 194.1 

SRN with stack pooling 129.6 179.5 
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can only provide image-level information in training, and our

method SRN + PS makes full use of the pixel-level segmentation

information. As a result, our method achieves 26% lower MAE

than Cascades-MTL on ShanghaiTech-A and 10.3% lower MAE on

UCF _ CC _ 50 dataset. The Switching-CNN [20] uses a switch classi-

fier to choose CNN regressors to get better performance than the

MCNN [2] . Apart from scale-aware methods, the adversarial loss

is adopted to improve the quality of estimated density maps in

Shen et al. [4] . However, generators on a small scale cause feature

loss, and our method cascades encoder–decoder networks at three

different scales to tackle this problem. Although the performance

of the SRN + PS is worse (MSE is 12.5 higher) than the ACSCP

[4] on ShanghaiTech-A dataset, SRN + PS achieves improvements on

more dense crowd examples (UCF _ CC _ 50 dataset) with 1.3/20.4

lower MAE/MSE. The CP-CNN [21] is a better crowd scene analysis

framework than previous attempts [32] . It uses contextual and

density class information based on the MCNN [2] and performs

the best compared to the other methods on ShanghaiTech-A

dataset. To summarize, our proposed SRN + PS method performs

better than most of the exiting methods on dense crowd datasets. 

For sparse examples, in Tables 1 and 3 , we perform evalua-

tion on two datasets: ShanghaiTech Part _ B and UCSD. Our pro-

posed method outperforms most of the previous methods except

for MCNN with respect to MAE on the UCSD dataset (our MAE is

0.17 higher). Apart from using and combining features between ad-

jacent scales, the SRN + PS method focuses on object regions accu-

rately by point supervision to segment spatial features. In addition,

a novel loss function, the row vector-based counting loss, forces

the model to optimize for the crowd count estimation. Thanks to

these improvements, the SRN + SP method achieves better results

on both datasets: the MAE/MSE on the ShanghaiTech Part _ B and

UCSD datasets are 13.8/18.8 and 1.24/1.63. 

In the crowd analysis of weakly supervised learning, we fol-

low the experiment methodology in the pioneering work from Sam

et al. [9] , which is one of the first attempts in this direction. We

compare the performance of SRN + CWTA with that of other meth-

ods from Sam et al. [9] in Table 4 . Although the performance of

our SRN + CWTA is slightly worse (MAE is higher by 4) on Part _ A

dataset, SRN + CWTA is robust (MSE is lower by 6.1) and has sig-

nificant advantages on more dense crowd datasets such as the

UCF _ CC _ 50. Its performance even exceeds the CCNN supervised

method [9] in some cases. This is likely due to the fact that multi-
cale structure can obtain more accurate salient object spatial in-

ormation in unsupervised learning, especially in dense crowd esti-

ation and analysis. This experiment shows that our SRN structure

an be successfully applied in weakly supervised crowd analysis. 

For the quality analysis of density maps, we get the PSNR and

SIM as defined in Eq. (11) . The estimated results are shown in

able 5 , which shows that the SRN + PS achieves the highest PSNR

nd SSIM on the ShanghaiTech Part _ A dataset. The overall results

enerated by the SRN + PS method on all three datasets are given

n Table 6 . 

To evaluate the practicability of crowd scene analysis meth-

ds in real-world applications, we analyze the complexity of each

odel in Table 7 . The CP-CNN model has the most parameters,

hich is 500 times more than the least, the MCNN method, lim-

ting its applications. In contrast, the SRN + PS has 13.2 million pa-

ameters, which is in the middle of the spectrum. Therefore, al-

hough our method performs slightly worse than the CP-CNN on

he ShanghaiTech Part _ A dataset, it gains significantly in terms of

omputational cost. Our SRN + PS model runs on an Intel Core i7 PC

ith a NVIDIA GTX1070 GPU and uses TensorFlow as backend. 

.4. Ablations on the shanghaitech parta dataset 

Our proposed SRN structure benefited from two major improve-

ents: the point supervision module and the row vector-based

ounting loss function. Therefore it is necessary to compare the

erformances of our method with and without these two parts,

hich are shown in Table 8 . By using point supervision mod-

les of three different scales in the SRN model, our performance

n the ShanghaiTech Part _ A dataset get significantly better, with

he MAE/MSE 29.4/25.2 lower than that without point supervision

odules. In addition, we weight the row vector-based counting
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Fig. 6. The training loss trajectories of the SRN with the point supervision module, 

the row vector-based counting loss l c , and the perceptive loss l p . 
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oss l c on euclidean loss l d , and it achieves significant improve-

ents with the MAE/MSE 26.9/17.9 lower than that without l c .

rom the last row of Table 8 , we can see that the perceptive loss l p 
urther optimizes the crowd counting results of the SRN with the

bove two assistant modules. These results imply that the above

ptimization modules can be extended to other crowd estimation

etworks to improve predictive performance. 

In addition, we illustrate in Fig. 6 the differences in training

osses of our method with point supervision module, row vector-

ased counting loss l c , and perceptive l p . In the early stage of train-

ng, the loss trajectory of SRN + PS with the counting loss is lower

han that of the SRN + PS. However, their trajectories quickly con-

erges to be similar as training progresses. This may be because

he counting loss only focuses on the accuracy of crowd counting,

ut it increases the quality loss of density maps. The perceptive
Fig. 7. Examples of predicted res
oss (the red curve in Fig. 6 ) can tackle this problem well due to

igh-level perceptual features of the predicted and ground-truth

ensity maps at different scales of the SRN from a pre-trained

GG-16 model at layer of relu2 _ 2. Our objective is to minimize

he perceptual differences between the above two images. There-

ore, the weighted sum of the three loss functions ( l d , l c , and l p )

s the solution to optimize the training process. We also analyze

he impact of the stack pooling module on the predicted results

f SRN. In the last two rows of Table 8 , the performances of SRN

re further improved by using the stack pooling layer, with the

AE/MSE 4.6/14.6 lower than that with only the single pooling

n the ShanghaiTech Part _ A dataset. These results indicate that the

tacked pooling layer is an effective module for crowd scene anal-

sis tasks. 

.5. Visualization of results 

To visualize the prediction of our SRN + PS model, we display

he point maps and density maps generated from our methods

n fully supervised and weakly supervised learning. Figs. 7 (from

art _ A) and 8 (from Part _ B and UCSD) show the sample results in

ense and sparse crowd scenes respectively. In each figure, the first

ow shows the test images, and rows 2–4 are the density maps

enerated from the SRN + PS, the predicted point maps, and the

round-truth density maps. To illustrate the crowd count and qual-

ty of density maps clearly, we adds the counting, PSNR and SSIM

alues below the images in each column. As shown in both figures,

ur method achieves better accuracy in both dense and sparse

rowd scenes, and the predicted point maps cover the head re-

ions well. There are some cases where the results are not as good

s expected, such as column 4 in Fig. 7 (SSIM is only 0.55) and

olumn 2 in Fig. 8 (SSIM is only 0.55), both of which are extreme

ases (extremely dense and extremely sparse). This is a problem

or future research. We also give the predicted density maps of the

eakly supervision framework based on Fig. 4 . Fig. 9 (from Part _ A)

hows the rough density maps by SRN + CWTA. Although the den-

ity maps are far from those obtained by fully supervised learning
ults in dense crowd scene. 
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Fig. 8. Examples of predicted results in sparse crowd scenes. 

Fig. 9. Examples of weakly supervised learning predictions. 

Fig. 10. Comparisons of MAE for different β1 , β2 , and β3 values on the ShanghaiTech Part _ A data. 
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methods in terms of quality, they are close to the results predicted

by fully supervised learning in terms of crowd counting. One ques-

tion worth future research in weakly supervised learning is how to

use some modules such as attention mechanism to locate the head

region accurately, in order to further bridge the gap between the

two training paradigms in predicted density map quality. 
t  
.6. Study of parameters β1, β2, and β3 

In order to choose the optimal values of β1 , β2 , and β3 in

q. (7) , we perform comparative experiments on Part _ A of the

hanghaiTech dataset. We firstly experiment on β2 which controls

he effect of the PS module on the performance of SRN, followed
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y an experiment on β1 which is the weight of the row vector-

ase counting loss function based on SRN + PS. Finally, we study

3 which is the weight of the perceptive loss function based on

RN + PS with l c . As shown in Fig. 10 , MAE errors in Fig. 10 (a)–(c)

ecrease as the values of β1 , β2 , and β3 increase, and the lowest

rror is obtained at 0.1. Therefore, we set β1 , β2 , and β3 all to 0.1

n our experiments. 

. Conclusion 

In this paper, we propose a novel model, called the Scale-

ecursive Network with Point Supervision (SRN + PS), for crowd

cene analysis, including head counting tasks and density map es-

imations. This model is a multi-scale architecture that utilizes the

eatures of adjacent scales, which tackles the point segmentation

ask to boost the quality of density maps except counting esti-

ation. In addition, the joint training strategy of multiple loss

unctions further improves the accuracy of counting predictions.

inally, a weakly supervised learning-based SRN + CWTA model is

iscussed to address the performance gap between fully super-

ised and unsupervised learning approaches. Experiments show

hat our method is robust in both dense and sparse crowd scene

ensity estimations, and can be incorporated into other related

etworks. 

As shown in our paper, the crowd scene analysis contains not

nly the crowd counting prediction, but also the location of ob-

ects and discrimination areas. Therefore, one promising direction

or future research is to incorporate discriminative information to

llow SRN to learn more powerful feature representations, an idea

nspired by Cheng et al. [35] and Zhou et al. [36] . Besides, we plan

o take advantage of local and multi-scale contextual information

o predict crowd counting more precisely. 
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